CLeVer: Continual Learning Visualizer for Detecting Task Transition Failure

Minsuk Chang*
Seoul National University

Donghun Kim®
Seoul National University

Seokweon Jung®
Seoul National University

Hyeon Jeon*
Seoul National University

Jinwook Seol
Seoul National University

A: Transition Matrix View

B: Task Pair Comparison View

C: Sample-Level Transition View

e N

task1_fall_norm Forward | | Reverse

Mode:Graph
Seafoods vs

Fruits (Medium)

sweatshirt vs
jean ‘ l

. ¥ Cold Foods vs
= Land Animals
. 1 (Large)
. i M
., = . F
= " Cold Foods vs
= Land Animals

vs

]
Dungeness_crab
0 R
1

Seafoods vs
Fruits (Tiny)

S-1~§

image: cont/model/dataset/imagenet_val/hammer/0_45317,jpg
label: 0
task_num: 1

hammer vs black_grouse v;
screwdriver black_stor

i
Dungeness_crab { Seafoods
‘ |

Figure 1: Three hierarchical views of CLeVer. (A) The Transition Matrix View shows how well the task transition is made among
each pair through matrix cells with color bins. (B) The Task Pair Comparison View shows abstract class-level information about
the transition process with two modes. (C) The Sample-Level Transition View shows the sample-wise result of the transition and a

corresponding image.

ABSTRACT

We introduce CLeVer, a novel visualization system designed to ana-
lyze and enhance the performance of continual learning models by
detecting task transition failures. Based on the literature review, we
discovered and classified three primary causes of task transition fail-
ure in classification tasks: class/position inconsistency, biased/noisy
samples, and diverse class scopes. These problems are critical in
terms of model performance but were not tackled in prior research
on continual learning. CLeVer is designed to address these chal-
lenges as an integrated system for model experiments and visual
analysis. Firstly, users can easily configure the tasks for continual
learning through a single JSON file. Then, our system automatically
simulates the continual learning process in a relatively short time
while generating data for visualization. Finally, the transition visual-
izer provides an effective visual representation of the task transition
process where users can easily detect the task transition failures in
continual learning. Our interview with machine learning experts and
a case study with three participants demonstrate CLeVer’s utility in
detecting and addressing such failures. We also discuss the system’s
potential applicability and adaptability for various computer vision
tasks while suggesting our future work.

Index Terms: Human-centered computing [Visualization toolkits];

*e-mail: jangsus1 @snu.ac.kr
Te-mail: hunkim98 @snu.ac.kr
fe-mail: hj@hcil.snu.ac kr
8e-mail: swjung @hcil.snu.ac.kr
Ie-mail: jseo@snu.ac.kr

Computing methodologies [Lifelong machine learning]

1 INTRODUCTION

Recently, there has been substantial improvement in the performance
of deep learning models. This is mainly due to the complex repre-
sentations that large models can hold [2]. However, especially for
edge devices, a small model size is required to maintain low latency
and power consumption, which also lowers its performance [12].

Therefore, continual learning emerged to perform various tasks
on edge devices with a small model. Continual learning denotes a
new deep learning paradigm that continuously trains a single small
model for various tasks. Unlike traditional single-step training, con-
tinual learning models should smoothly transition between infinite
streams of tasks to maintain their performance. Prior works tried to
prevent the model from losing its knowledge during the transition by
designing a loss function [15], changing the model architecture [18],
or keeping past samples in an external memory [22].

However, in the classification domain, there are cases where the
task transition cannot be made fluently due to the diversity of in-
the-wild tasks. We discovered three cases where task transitions
tend to fail, which can easily happen during deployment but cause
severe degradation in model performance. Firstly, the position of
classes may differ between the two tasks, causing only one to per-
form well. Secondly, biased or noisy samples that do not perfectly
match the class labels may be introduced. Finally, the granularity of
classes may vary following the application’s requirements, leading
to a similar result as the first problem. A detailed explanation of
these challenges is described in Section 3. Machine learning (ML)
engineers must ensure these problems do not appear on their models;
however, it is difficult to do so, especially when deploying models
in edge devices.

Therefore, we propose CLeVer, comprehensive system for model

Type 1: Class/Position Inconsistency

Type 2:Biased/Noisy Samples

Type 3: Diverse Class Scopes

- DN

Previous Task Next Task Previous Task
Class A: Black Fur
Class A: Dog -7 Class A:Kitten R \«/\;ﬁ;}
ClassB:Cat -~ ™ a4 Class B: Cougar l;)
RN : wea N L 5
‘Noise Black Cats ™
Class C: Rat Class C: Dog Class B: White Fur
FE= F .
, . E - s » *t]/
Class D: Horse "3 Class D: Mouse "1 \}’, "
i . "~ k&
= w— A - -5
Class E: Puma Class E: Horse White Dogs

Y

Next Task Previous Task Next Task R
Class A: Black Fur
¥ 4 Class A: Land Animals -;----->
| ")
I Class B: Marine Animals o
Black Dogs
Class B: White Fur Class C: Fly Class C: Person
| gt B :
* S
] Class D:Bees ~ ----- 2> Class D: Insects
White Cats Class E: Spiders Class E: Instruments

AN

Figure 2: Examples of three potential problems that can cause the task transition to fail. Type 1 is about class and position inconsistency among
tasks, showing that the class labels of Dog, Cat, Rat, and Horse can differ. Type 2 shows that class names and samples might not match,
introducing an unintended bias factor of species (dogs/cats) against class (colors). It also exemplifies the possible noisy samples with red boxes.
Type 3 indicates that tasks may vary in class scopes, causing some of the labels to be reallocated (marked as red lines) during the transition.

experiments and analysis targeting ML engineers as its core users.
It helps users detect the aforementioned challenges in the class-
incremental task domain of continual learning. CLeVer consists
of two components: Continual Learning Simulator for model ex-
periments, and Transition Visualizer for visual analysis. First, the
Continual Learning Simulator automatically generates data through
fast simulation of continual learning based on the user’s task config-
uration. Through CLeVer, users can easily describe their required
tasks by only writing information in a JSON file. Based on the con-
figuration, CLeVer automatically generates the data through model
experiments. Training a continual learning model takes a lot of time
due to its design for learning an infinite stream of tasks. Therefore,
we adopt a task-pairwise model experiment to simulate task transi-
tions in continual learning with lower time cost. After generating the
data, the Transition Visualizer effectively visualizes the data through
the three components, allowing users to detect the continual learning
challenges easily. Our integrated system design simplifies task setup
and model experimentation while offering insights into continual
learning models through visual analytics.

We conduct an expert interview and a case study to validate that
our system can support users in detecting the practical challenges
of continual learning. Both studies confirmed that our system can
effectively assist users in detecting the aforementioned task transi-
tion challenges with apparent patterns. We wrap up our paper by
discussing how our system can be extended for various computer vi-
sion tasks with enhanced scalability. Also, we suggest sample group
analysis as our future work to support users’ better understanding of
noisy/biased samples through grouping.

2 BACKGROUNDS AND RELATED WORK

We describe previous literature on continual learning and the visual
analytics systems for deep learning models.

2.1 Continual Learning

Continual learning involves adapting to a sequence of tasks without
forgetting previous ones, despite the challenge of catastrophic forget-
ting [7,17]. Solutions include a specialized loss function to preserve
prior predictions [15] and a replay buffer for old samples [22]. While
these methods help retain knowledge, they don’t address real-world
challenges during task transitions. Our work in Section 3 outlines
these issues and introduces a detection system for them.

2.2 Visual Analytic Systems for Deep Learning Models

Research efforts have aimed to merge visual analytics with deep
learning for training analysis. An interactive system was developed
for analyzing the training of deep learning models, albeit limited
to a single model at a time [20]. Another project offered a system
for comparing model snapshots during training, missing the aspect
of continuous model evolution [31]. Reviews have covered efforts

to visualize ML model behaviors, yet not focusing on continual
learning [4]. A conceptual framework was suggested for managing
continual learning, but it lacked implementation and validation [11].
Addressing these gaps, our work introduces CLeVer, a visual an-
alytic system designed for identifying task transition failures in
continual learning.

3 TASK TRANSITION CHALLENGES

As continual learning consists of an infinite stream of task transitions,
performing each transition without losing the prior knowledge is
essential for maintaining the performance. However, our literature
review discovered that in an in-the-wild environment, there are
circumstances where the performance of a previous task has to
decrease so that the next task can perform better. We analyzed and
categorized three potential problems that inevitably cause the task
transition to fail but were not spotlighted in the prior works. The
brief examples of each challenge are described on Figure 2.

3.1

Each classification task holds a list of classes that need to be clas-
sified by the model. Here, the position or order of these classes or
labels is often neglected because they did not cause problems in
traditional ML models due to the nature of machine learning. How-
ever, in continual learning, the inconsistency between the classes
and their order can become a serious problem in terms of transition.
The transition between tasks with different class positions causes an
unnecessary shift in the model’s latent space and decision bound-
ary [10]. For example, assume that a classifier is trained with fask A,
which predicts the images of dogs as 0 and cats as 1. If the next task
classifies dogs and cats but with different labels (0 for cats and 1 for
dogs), the model’s decision boundary must be inverted, causing the
model to predict only one task correctly.

Furthermore, the class names may vary among the datasets the
user uses. Because the dataset collectors assign the corresponding
class names individually, datasets may have different class names
even with the same samples. Altogether, the class and label inconsis-
tency makes the tasks collide, even though those tasks share similar
samples and decision boundaries. Figure 2 shows that the position
and name of shared classes may differ among tasks, forcing the
model to lose its accuracy toward previous tasks. This counters the
goal of continual learning, which is maintaining prior knowledge.

Type 1: Class/Position Inconsistency

3.2 Type 2: Biased/Noisy Samples

The class name or label may not accurately explain the data samples
it holds due to dataset bias or noisy samples, causing the task tran-
sition to fail. Image datasets contain a bias that makes the model
create an unintended decision boundary [27]. For instance, if a class
boat only includes the images of a boat floating on the water, then
the model might predict the class solely only the presence of water.

[N O R S

~ Task Configuration Pairwise Model Experiment

‘/ Dataset 1

(Class A Class B)

‘/ Dataset 2
\ Class F %
(Dataset 3

‘\ ClassD Class E J 1

Name: “Task Name",

Glosses: [) Pretisined _, Previous _, Next

Weights Task Task

[Class A, 1,
[Class D]

Figure 3: Internal process of Continual Learning Simulator for gen-
erating task transition data. After the user configures tasks, CLeVer
automatically runs the model experiment for all task pairs.

Unlike previous works that treated bias as a cause of unreliable
prediction, we consider bias as a problem that hinders fluent task
transition. Bias may directly cause the transition between similar
tasks to fail by distorting the decision boundary toward bias.

On the other hand, the data used in the training process are usually
collected by the deployed edge device, which tends to include noisy
samples [14]. Like the bias problem, noisy samples interrupt the
model from learning solid decision boundaries during the training,
ultimately degrading the transition performance. The case in Fig-
ure 2 exemplifies both the bias and noisy problem. The model may
differentiate two classes based on other factors (Dogs vs Cats) even
though the class names are the same, causing the former task’s ac-
curacy to decrease during the transition. Also, noisy samples (bird,
flower) prevent the model from building correct decision boundaries.

3.3 Type 3: Diverse Class Scopes

Another crucial challenge in task transition is varying class scopes,
which originate from the diversity of class granularity in datasets and
applications. This variation can significantly impact the accuracy
of previous tasks, particularly when classes are split or merged.
For instance, as illustrated in Figure 2, splitting or merging classes
between tasks can lead to a decline in the accuracy of the original
class as part of the samples are reallocated to new labels. The
reallocated samples cause the model performance to drop partially
for the same reason as Section 3.1. Various datasets [8] and reviews
[25] suggest that such variation in class scope is common practical
applications, underscoring its significance.

4 SYSTEM DESIGN

CLeVer targets to automatically run model experiments and visualize
its results to quickly detect the listed challenges in Section 3. Our
system consists of a Continual Learning Simulator, which runs
model experiments based on the user’s task configuration, and a
Task Transition Visualizer for analyzing the generated data.

4.1 Continual Learning Simulator

We first need to run experiments and extract its data to evaluate
whether the continual learning model performs the task transition
smoothly. The Continual Learning Simulator receives the config-
uration of tasks from the user and automatically runs the required
model experiments. The process is briefly depicted in Figure 3.

name: "Animals",
super_classes: [
{name:"Land", classes:[Cats, Dogs, ...] 1},
{name:"Marine", classes:[Fish, Clams, ...] }
1

Form 1: Example configuration of classification tasks in JSON format.

411

Users can easily configure the tasks their continual learning model
should handle by filling in Form 1. According to the prior formu-
lation of continual learning [28], we have assigned two essential
attributes to each task: task name and the classes it needs to classify.
The advantage of this configuration is that users can combine multi-
ple classes from various datasets to build a superclass to represent a

Task Configuration

Base Mode Difference Mode

" AL il

Figure 4: Transition Matrix View with (right) or without (left) the dif-
ference mode. The difference mode splits the screen into upper and
lower triangles, showing different information. The upper triangle
represents the average value, and the lower triangle represents the
difference of symmetric cells. Red indicates the transition is more
fluent from rows to columns, while green indicates the opposite. Using
the matrix view, users can readily get a holistic insight into which task
transitions are failing, with information on asymmetry.

broader concept. For example, classes of hair dryers, dishwashers,
and felevisions can be merged into the superclass of electronic appli-
ances. Users can create classes of any granularity using the classes
from various datasets as building blocks.

4.1.2 Pairwise Model Experiment

After building the configurations of each task, CLeVer automati-
cally runs the model experiments and exports its result to the Task
Transition Visualizer (Section 4.2), following Section 5. However,
simulating the whole training process of a continual learning model
with a long task stream takes substantial time. Therefore, we store
and reuse the pre-trained weights of our baseline model to mock the
status after passing the prior task stream, where the weights include
general knowledge of the passed task stream. Through this approach,
we can reduce the time cost for model experiments while still being
able to detect the challenges in task transition. Additionally, task
transition is performed bi-directionally (Task A — Task B and Task
A < Task B) because the task transition performance may not be
symmetrical for a single pair of tasks [1].

During the model experiment, we calculate and store the model’s
per-sample prediction results that will be used in our visualizer. We
have simplified the metric designed for continual learning by Kemker
et al. [13] to evaluate the task transition performance. Formally, the
performance of the task transition is defined as:

AcCprey(M;) — AcCprer(M))
Accprev(M;)

)

TransitionFailprey pext =

Our metric calculates how much the accuracy for the former task
has dropped during the transition. Also, following the baseline, our
new metric normalizes the accuracy drop among all task transitions
to keep them all on the same scale. In the metric, M is the classifier
trained from time O to j. At time 0, the pre-trained weight is loaded,
and training for Taskpy., starts until time i. After, the model is
trained for Task,ey until time j. The test accuracy is abbreviated as
function Acc with the corresponding task’s test data.

4.2 Task Transition Visualizer

After the simulator generates the dataset (Section 4.1), the Task
Transition Visualizer demonstrates how well the transition has been
performed. The system has three hierarchical views: Transition
Matrix, Task Pair Comparison, and Sample-Level Transition View.
Figure 1 depicts the overall design of the Task Transition Visualizer.

Class-Level Transition Mode

Mode:Graph

Embedding Similarity Mode

[r—

|
=
-

Figure 5: The example of Task Pair Comparison View with Embedding
Similarity Mode (right) and Class-Level Transition Mode (left). The
Embedding Similarity Mode shows the line patterns to reveal the task
transition challenges, while the Class-Level Transition Mode simplifies
the transition graph.

4.2.1 Transition Matrix View

The Transition Matrix View (Figure 1A) utilizes a matrix to visualize
the task transition fluency among all task pairs. The transitions can
be understood as a dense, directed network between tasks. There-
fore, we chose a matrix to show the holistic insights of transitions.
Each row and column corresponds to the same task, where rows are
previous tasks and columns are next tasks. The score to measure the
task transition fluency is the normalized accuracy drop of the pre-
vious task, according to the definition of task transition challenges
in Section 3. The darker color corresponds to a more substantial
accuracy drop, which means poor transition performance. For users
to more effectively reveal the transition failing items, the colors are
binned into a certain number, which is also controllable through
buttons. The matrix is reorderable in both directions, which groups
the transition failing pairs. Our pilot study empirically found that the
leaf order algorithm best grouped the tasks among the algorithms sur-
veyed by Behrisch et al. [S]. When the Difference Mode is enabled,
the matrix representation changes to show the difference between
row-to-column and column-to-row transitions. As inFigure 4, the
mode makes the left-down triangle represent the difference while
making the right-up triangle show the average. This enables the
users to determine which task transition needs to be performed in a
certain direction to maintain high performance [1].

4.2.2 Task Pair Comparison View

The Task Pair Comparison View (Figure 1B) is generated if the user
brushes cells on the Transition Matrix View. Firstly, the accuracy
graph layout during the transition is visualized in the Class-Level
Transition Mode. Among four squares, the second and third quad-
rants express the graph layout of each class from the previous task,
and the first and fourth quadrants show the layout of classes from
the next task. The layout abstracts the original accuracy graph by
directly connecting the beginning and end of the transition graph
with a straight line, forming a trapezoid. Through trapezoids, users
can easily perceive and compare the slope of those graphs. The
color is encoded with a diverging color map with five bins: purple
for a steep accuracy drop and green for a rise. Users can easily
detect tasks or classes that fall or rise suddenly through both angle
and color encoding. Also, when many cells are brushed, leading to
smaller trapezoids, users can still recognize the slope of the graph
through its color.

If the user toggles the mode to the Embedding Similarity Mode,
each cell shows purple and green lines, showing the similarity among
the classes. In this mode, users can easily detect patterns correspond-
ing to the challenges defined in Section 3. The diagonal lines are
represented in purple to alert the user that the Type 1 or Type 3
challenge might exist, while other lines remain green. Type 1 chal-

Generate Plausible Tasks Seafoods: [rock_crab, Dungeness_crab, American_lobster]

_ Fruits: [banana, lemon, orange]
GPT

Tools: [hammer, screwdriver, dutch oven]
Class Position Sample Bias Diverse Class Scopes
Tools vs Fruits (Large)
. hammer banana Tools vs Fruits (Medium)
Fruits screwdriver vs lemon

dutch oven orange hammer lemon
—— dutch oven S orange

orange vs lemon

Tools vs Fruits (Medium)

hammer vs lemon
dutch oven orange
Tools vs Fruits (Tiny)

hammer vs orange

-

Fruits (Reversed) Fruits

lemon vs orange orange Vs lemon

Figure 6: The process of generating tasks for case study. After GPT
generates the list of plausible tasks, we generate challenging tasks
based on three criteria: class position, sample bias, and class scopes.

lenge appears as a pattern of diagonal \ or crosses X, and Type 3

challenge appears as triangles N Also, users can control the slider
only to show lines with sufficient similarity over certain criteria.
Besides diagonal lines, strong vertical lines represent the specific
classification task’s difficulty due to similar image samples. In con-
trast, vivid horizontal lines show that the task transition is easier due
to the similar distribution of data samples between the tasks. The
figure of mode change is described in Figure 5.

4.2.3 Sample-Level Transition View

The Sample-Level Transition View (Figure 1C) appears when the
user clicks on the specific task transition in the Task Pair Comparison
View. Four large sections indicate the same section split as the Task
Pair Comparison View’s quantiles. The horizontal axis indicates
the timestep where the transition is made, and the vertical axis
corresponds to each data sample. This view consists of small and
flat rectangles with colors that follow the encoding in Section 4.2.2,
indicating whether the model correctly predicted the sample at a
certain timestep. We adopted the square-filling representation for
model predictions from Ren et al. [23], which also reveals the global
trend while showing sample-wise results. The samples are ordered
based on the exponential sum to form an increasing or decreasing
shape. The ordering criteria are formulated as follows:

T T ‘
Previ=Y 27/ «Pred;j, Next;=) 2~(T=J) xPred; ; (2)
j=1 j=1

In the criteria, Prev; and Next; indicate the i-th sample’s score for
reordering, and j indicates the timestep during the transition while
having total T timesteps. Prev and Next orders differently due to
which part it focuses on: first or last timestep of transition. Pred; ;
becomes 1 for correct prediction while O for incorrect prediction.

5 EVALUATION

We interviewed domain experts for design feedback and conducted
the following case study to evaluate whether our design supports
users’ easy discovery of the task-failing process.

5.1 Data Generation

We first generated plausible real-world tasks, trained the model with
task pairs, and calculated the embedding similarity before evaluating
our visualization system.

5.1.1 Task Generation

Compared to classic works [15, 18], recent work suggested realistic
datasets for testing continual learning [16]. Specifically, they cap-
tured the long-term technical improvements in daily objects such as
cars and synthesized a benchmark dataset. Aligned to such work,
we formed the baseline of our study dataset to simulate real-world
situations, incorporating plausible task transitions. To do so, we
leveraged the reasoning capability of Large Language Models [29]
to generate a realistic task transition sequence. We asked Chat-
GPT [19] to generate likable image binary classification tasks in
daily smartphone usage. Using appropriate prompting techniques
(e.g. injecting expertise [30]), we generated ten base tasks that can
be performed using the classes from ImageNet. Then, we generated
30 more challenging tasks following the three criteria: class position,
sample bias, and diverse class scopes, exemplified in Figure 6.

5.1.2 Pairwise Model Training

For the experiment, we used EfficientNet-b0 [26] with pre-trained
weights using ImageNet. We simulated the task transition for every
pair, following Section 4.1.2. Each task pair was trained for 40
steps with a batch size 16. Also, an Adam optimizer with a constant
learning rate of 0.001 was used throughout the experiment.

5.1.3 Embedding Similarity

We calculated embedding similarity between the classes so that the
Task Pair Comparison View can visualize it. We used the pre-trained
ResNet-18 model to generate the image embeddings. For simple cal-
culation, the embeddings from the same class are averaged to obtain
the embedding center. We then calculate the class similarity with
the cosine distance between the centers of per-class embeddings.

5.2 Expert Interview

We interviewed two domain experts in machine learning and artifi-
cial intelligence, each with four years of experience. They reported
their familiarity with continual learning. During the interview, partic-
ipants freely interacted with CLeVer as we collected their opinions
on system design, utilizing the think-aloud protocol.

Participants highlighted the effectiveness of matrix reordering
and color bins in grouping poor transition pairs while suggesting
richer color bin descriptions and highlighted symmetric cells in Dif-
ference Mode. The Task Pair Comparison View was praised for its
ability to reveal transition challenges through distinct visual patterns,
particularly in the Embedding Similarity Mode. Additionally, they
could effectively identify noise or out-of-distribution samples in the
Sample-Level Transition View. However, they suggested improv-
ing user interaction, such as making short lines easier to click and
highlighting selected rows. These findings indicate that our system
supports identifying and analyzing task transition failures and noisy
samples. Also, based on feedback, we improved usability in Dif-
ference Mode and Sample-Level Transition View by highlighting
selected cells and rows for a better user experience.

5.3 Case Study
5.3.1 Procedure

We also evaluated the usability of CLeVer through a case study, es-
pecially whether it supports users in detecting task transition failures.
Three graduate students studying ML and visualization for 3 years
participated in our study. We first explained the concept of continual
learning and three challenges (Section 3) for 15 minutes. Then, the
participants were asked to find the given challenges by searching
for patterns described in Section 4.2.2 while using CLeVer for 15
minutes. Lastly, they were asked to report the identified transition
failures and their strategies to find them.

5.3.2 Discovering Challenges through Patterns

All three participants successfully identified our intended patterns in
the Task Pair Comparison View: diagonal or cross (\, X), triangles

(ﬂ), which correspond to each challenge. Furthermore, participants
discovered new patterns corresponding to certain cases. For instance,

sometimes partial triangles (i, \]) appeared instead of triangles,
which depends on the distance between the image embeddings. We
used ResNet for embeddings, which might have produced incorrect
similarity compared to how humans perceive similar images [24].

Also, one of the participants reported horizontal lines (—) as an
observed pattern corresponding to a fluent task transition.

5.3.3 Effective Sample-level Inspection

Participants also successfully identified noisy samples that might
degrade the model performance in the Sample-Level Transition View,
where samples with low accuracy float to the top due to Equation 2.
For instance, one of the participants reported the class beer glass
to include a noisy sample where a human holds a beer glass by
clicking on the white rows appearing on the top. Furthermore, after
clicking a few samples, they tried to group some samples with similar
transition patterns and find the shared characteristics. For example,
one participant reported three similar images in the fig class and
called them “small, multiple figs,” actively grouping noisy samples.
This shows the possible effectiveness of per-group analysis of image
samples, which will be further elaborated in Section 6.3.

6 DISCUSSION

In this section, we discuss our system design’s adaptability to various
image-based deep-learning tasks and robustness in environments
with many tasks. We also suggest sample group analysis as our
future work to support user interactions better.

6.1 Flexible Design

‘We claim that CLeVer can be extended to various usage scenarios
and task types. Firstly, CLeVer can be used for various computer
vision applications [3] with different metrics for their performance,
including object detection (IoU), semantic segmentation (Pixel Ac-
curacy), and image generation (CLIP [21] score). The Transition
Matrix View can show various metrics with the same color encod-
ing scheme. Also, the data shown in the Sample-Level Transition
View can be easily replaced with proper representations like bound-
ing boxes or generated images. Furthermore, we may apply our
system design for multi-class classification tasks for devices with
sufficient screen ratios. The size of 2x2 cells in Task Pair Com-
parison View and Sample-Level Transition View may be expanded
into MxN, which is the number of classes. In such circumstances,
our two modes in Task Pair Comparison View can show significant
patterns through the purple-green color encoding and interactive
slider. Evaluating the extended design’s usability for various tasks
with sufficient participants would prove its effectiveness.

6.2 Scalability

Most previous research in continual learning experimented with a
stream of at most ten tasks [7], while some experimented on a large
stream of 200 tasks [6]. Our system can also be effective for large
task spaces, which may be required in future applications. As proved
in the case study, our matrix-based design in a Transition Matrix
View can effectively present the results of many tasks through color
binning. Also, the required data for the Task Pair Comparison View
and Sample-Level Transition View are fetched from the server when
the user brushes the area, leading to a memory-efficient system.
Furthermore, CLeVer independently trains the model for each task
pair, enabling an easy parallelization of the data generation.

6.3 Sample Group Analysis

The sample-level bias/noise inspection in CLeVer is made by click-
ing on each image sample. However, our case study showed that
grouping image samples based on similar transition patterns could
give users deeper insights into the distribution of images. Users can
establish clearer high-level concepts about biased or noisy samples
by forming problematic image groups, often called slices [9]. These
understandings will further support users in deciding how to control
the sample quality and fairness for fluent task transitions.

7 CONCLUSION

In conclusion, our system CLeVer properly addresses task transition
failures in continual learning models. By integrating a user-friendly
interface with sophisticated visual analytics, CLeVer enables effi-
cient model experiments, allowing users to easily detect and analyze
task transition challenges. Also, our interview with domain experts
and a qualitative case study demonstrates the system’s effective-
ness. Its flexible design and adaptability to various computer vision
tasks underscore its potential to enhance the performance of Al in
much broader devices. Also, our newly classified challenges in task
transition may be extended in future research, ultimately forming a
guideline for ML engineers. This work lays a foundational step for
future research in practical deployment scenarios, highlighting the
importance of continual learning in real-world applications.

ACKNOWLEDGMENTS

We sincerely thank our reviewers for their valuable feedback and our
study participants for their indispensable insights and contributions.
This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No.
2023R1A2C200520911).

REFERENCES

[1]1 S.J.Bell and N. D. Lawrence. The Effect of Task Ordering in Continual
Learning. 5 2022.

[2] R.Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al. On
the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

[3] J. Chai, H. Zeng, A. Li, and E. W. Ngai. Deep learning in computer

vision: A critical review of emerging techniques and application sce-

narios. Machine Learning with Applications, 6:100134, 2021.

A. Chatzimparmpas, R. M. Martins, 1. Jusufi, K. Kucher, F. Rossi, and

A. Kerren. The state of the art in enhancing trust in machine learning

models with the use of visualizations. In Computer Graphics Forum,

vol. 39, pp. 713-756. Wiley Online Library, 2020.

[5] M. Davari, N. Asadi, S. Mudur, R. Aljundi, and E. Belilovsky. Probing

representation forgetting in supervised and unsupervised continual

learning, 2022.

M. Davari, N. Asadi, S. Mudur, R. Aljundi, and E. Belilovsky. Probing

representation forgetting in supervised and unsupervised continual

learning. In 2022 IEEE/CVF Conference on Computer Vision and

Fattern Recognition (CVPR), pp. 16691-16700, 2022. doi: 10.1109/

CVPR52688.2022.01621

[71 M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,

G. Slabaugh, and T. Tuytelaars. A Continual Learning Survey: Defy-

ing Forgetting in Classification Tasks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 44(7):3366-3385, 7 2022. doi: 10.

1109/TPAMI.2021.3057446

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition, pp. 248-255. Ieee, 2009.

G. d’Eon, J. d’Eon, J. R. Wright, and K. Leyton-Brown. The spotlight:

A general method for discovering systematic errors in deep learning

models. In Proceedings of the 2022 ACM Conference on Fairness,

Accountability, and Transparency, pp. 1962-1981, 2022.

[10] A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia. A brief review

of domain adaptation, 2020.

[4

=

[6

i}

[8

[t

[9

—

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]
[28]

[29]

(30]

[31]

Y. He, Z. Huang, and B. Sick. Design of explainability module with ex-
perts in the loop for visualization and dynamic adjustment of continual
learning. arXiv preprint arXiv:2202.06781, 2022.

M. Horowitz. 1.1 computing’s energy problem (and what we can do
about it). In 2014 IEEE international solid-state circuits conference
digest of technical papers (ISSCC), pp. 10-14. IEEE, 2014.

R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan. Measur-
ing catastrophic forgetting in neural networks. In Proceedings of the
AAAI conference on artificial intelligence, vol. 32, 2018.

C.D. Kim, J. Jeong, S. Moon, and G. Kim. Continual learning on noisy
data streams via self-purified replay. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 537-547, 2021.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences of the United States of America, 114(13), 2017.
doi: 10.1073/pnas. 1611835114

Z. Lin, J. Shi, D. Pathak, and D. Ramanan. The clear benchmark:
Continual learning on real-world imagery. In Thirty-fifth conference on
neural information processing systems datasets and benchmarks track
(round 2), 2021.

B. Liu. Lifelong machine learning: a paradigm for continuous learning.
Frontiers of Computer Science, 11(3), 2017. doi: 10.1007/s11704-016
-6903-6

A. Madotto, Z. Lin, Z. Zhou, S. Moon, P. Crook, B. Liu, Z. Yu, E. Cho,
P. Fung, and Z. Wang. Continual learning in task-oriented dialogue
systems. In M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih, eds.,
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 7452-7467, 2021. doi: 10.18653/v1/2021.
emnlp-main.590

OpenAl. Chatgpt. https://www.openai.com/blog/chatgpt,
2023. GPT-4 [November, 2023].

N. Pezzotti, T. Hollt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and
A. Vilanova. Deepeyes: Progressive visual analytics for designing deep
neural networks. IEEE Transactions on Visualization and Computer
Graphics, 24(1):98-108, 2018. doi: 10.1109/TVCG.2017.2744358
A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable
visual models from natural language supervision. In International
conference on machine learning, pp. 8748-8763. PMLR, 2021.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl:
Incremental classifier and representation learning, 2017.

D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares:
Supporting interactive performance analysis for multiclass classifiers.
IEEE transactions on visualization and computer graphics, 23(1):61-
70, 2016.

B. D. Roads and B. C. Love. Enriching imagenet with human similar-
ity judgments and psychological embeddings. In Proceedings of the
ieee/cvf conference on computer vision and pattern recognition, pp.
3547-3557, 2021.

C. N. Silla and A. A. Freitas. A survey of hierarchical classification
across different application domains. Data mining and knowledge
discovery, 22:31-72, 2011.

M. Tan and Q. Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In International conference on machine
learning, pp. 6105-6114. PMLR, 2019.

A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR
2011, pp. 1521-1528, 2011. doi: 10.1109/CVPR.2011.5995347

L. Wang, X. Zhang, H. Su, and J. Zhu. A Comprehensive Survey of
Continual Learning: Theory, Method and Application. 1 2023.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou. Chain-of-thought prompting elicits reasoning in
large language models, 2023.

B. Xu, A. Yang, J. Lin, Q. Wang, C. Zhou, Y. Zhang, and Z. Mao. Ex-
pertprompting: Instructing large language models to be distinguished
experts, 2023.

H. Zeng, H. Haleem, X. Plantaz, N. Cao, and H. Qu. Cnncomparator:
Comparative analytics of convolutional neural networks. arXiv preprint
arXiv:1710.05285, 2017.

https://www.openai.com/blog/chatgpt

	Introduction
	Backgrounds and Related Work
	Continual Learning
	Visual Analytic Systems for Deep Learning Models

	Task Transition Challenges
	Type 1: Class/Position Inconsistency
	Type 2: Biased/Noisy Samples
	Type 3: Diverse Class Scopes

	System Design
	Continual Learning Simulator
	Task Configuration
	Pairwise Model Experiment

	Task Transition Visualizer
	Transition Matrix View
	Task Pair Comparison View
	Sample-Level Transition View

	Evaluation
	Data Generation
	Task Generation
	Pairwise Model Training
	Embedding Similarity

	Expert Interview
	Case Study
	Procedure
	Discovering Challenges through Patterns
	Effective Sample-level Inspection

	Discussion
	Flexible Design
	Scalability
	Sample Group Analysis

	Conclusion

