
IoLens: Visual Analytics System for Exploring Storage I/O Tracking Process
Changmin Jeon*†, Jiwon Ha∗†, Hyolim Hong∗†, Hyeon Jeon‡, Hyeonsang Eom†, Heonyoung Yeom†, Jinwook Seo†

Seoul National University

Figure 1: Overview of IoLens. (A) Metric view visualizes various system metrics, including performance information, acting as a
basis for I/O performance analysis. (B) Summary view provides summarized and detailed content information from the left metric
view. (C) Combination chart represents throughput as a line and latency as an area divided into two levels: 99% and 99.99%. (D)
Heatmap is sorted and visualized in descending order by CPU utilization by core. (E) Cumulative stacked area chart visualizes
the status of F2FS segments. (F) A heatmap visualizes Logical Block Address (LBA) access patterns. (G) Radar chart compares
summarized system metrics for total data and brushed data, which can be switched to plain text using the toggle button. (H) Contour
and scatter chart show correlation between user-selected system metrics. IoLens is available at iolens.github.io/demo/.

ABSTRACT

As we enter the era of big data, a substantial amount of Input/Output
(I/O) requests to storage devices are generated, making the mainte-
nance of I/O performance important. Furthermore, I/O performance
directly affects the overall user experience in edge devices. How-
ever, with the increasing complexity of systems, numerous factors
influencing I/O performance have emerged, making it challenging to
analyze and explore the overall I/O processing workflow. To address
this issue, we introduce IoLens, a visual analytics tool that helps
users explore system I/O performance from kernel I/O stack up to
virtual file system and storage device drivers. Our tool helps users
analyze I/O performance by identifying the overall workload of I/O
requests and intuitively identifying anomalies. The effectiveness and
applicability of IoLens have been validated through a usage scenario
following a system engineer working on system kernels. A user
study with four domain experts is conducted to further validate the
usability of the tool.

*equal contribution
†e-mail: {salute, jwh0245, hyolim98, hseom, yeom, jseo}@snu.ac.kr
‡e-mail:hj@hcil.snu.ac.kr

Index Terms: Human-centered computing—Visualization—
Visualization systems and tools; Computer systems organization

1 INTRODUCTION

The recent development of NAND flash made storage performance
comparable to the performance of main memory devices. This made
storage Input/Output (I/O) performance to significantly influence
overall performance of the computer hardware system. Such impor-
tance has been reinforced as we entered the era of big data, where
substantial data is saved in system storage (e.g., data center) and
frequently accessed. However, analyzing I/O performance is chal-
lenging because it is influenced by various factors in the system
rather than by specific factors, e.g., storage speed.

Therefore, several studies aiming to analyze and manage the
I/O workload of storage devices have emerged [6, 15, 16]. The
purpose of these studies is to reduce overall resource usage and
energy consumption [6, 16] or improve the performance of super-
computer system [15] by optimizing storage device performance.
Also, various benchmarks have been developed to measure system
I/O performance, e.g., fio [1] and filebench [14]. These benchmarks
are compatible across a variety of systems and provide key perfor-
mance indicators such as throughput and latency for measurement
results, allowing users to easily examine system performance. How-
ever, these benchmarks only provide summarized information about
performance results despite their convenience.

https://iolens.github.io/demo/


Figure 2: The components of the Linux kernel I/O stack, including the
Virtual File System (VFS), Block Layer, Device Driver, I/O Scheduler,
and Page Cache. The Linux kernel I/O stack is structured with multiple
layers to efficiently handle I/O requests.

Moreover, the current practice of analyzing storage I/O perfor-
mance has several limitations. For example, the existing tools that
analyze the I/O stacks only focus on the block layer [3,8]. Although
the block layer is an important layer that acts as a buffer in the mid-
dle of the I/O stack, it is only one of the complex I/O stacks (Figure
2). I/O performance may fluctuate due to events in other layers of
the I/O stacks, which makes it difficult to analyze performance accu-
rately by examining only the block layer. Furthermore, in practice, a
system analyst analyzes storage I/O through the system logs consist-
ing of long texts. This method is complicated and burdensome, and
it relies on the analyst’s experience or skills. To resolve this issue,
we have our research motivation to explain multiple layers within
I/O stacks using appropriate visualizations, thus supporting users in
performing I/O analysis effectively.

To this end, we present IoLens, a visual analytics tool that al-
lows users to analyze storage I/O performance at a glance. IoLens
explains the entire kernel I/O stack, from the device driver level
(lowest) to the virtual file system layer (highest) (Figure 2). Our
tool also visualizes CPU and memory utilization, which are crucial
information in I/O performance analysis. Moreover, IoLens pro-
vide charts that correspond to different system metrics while linking
them to support users in readily identifying anomalies related to
performance degradation coupled with multiple metrics.

We demonstrate a usage scenario as a validation of the effec-
tiveness and applicability of the proposed tool. In the scenario, we
show that IoLens is capable of supporting users to understand I/O
processing within the kernel and to find the fundamental cause of
performance degradation. To this line, we also carried out a user
study involving four domain experts, each possessing over six years
of experience in dealing with system I/O performance. The experts
agreed that IoLens is effective in identifying the characteristics of
unfamiliar workloads, finding points of performance degradation,
and analyzing the cause of the degradation.

2 BACKGROUND AND RELATED WORK

2.1 The Understanding of Storage Device I/O
2.1.1 Kernel I/O stack
The kernel I/O stack’s role is to process user space I/O requests
passed to kernel space through system calls. The kernel I/O stack
consists of a virtual file system (VFS), block layer, device driver,
and various other components (Figure 2). While VFS provides core

interfaces to support various file systems, the file system structurally
manages data such as names, sizes, and addresses of files and direc-
tories. The block layer provides an interface to read and write data
to block devices such as HDD and SSD. The device driver manages
communication between the physical hardware and the operating
system. Such a complicated I/O stack allows the kernel to handle I/O
requests efficiently but also makes the analysis difficult. Therefore, it
is analyzed only based on information from a specific layer, e.g., the
block layer, in practice. Instead, we propose a visual analytics tool
that can readily analyze entire I/O stacks within a single dashboard.

2.1.2 Log-structured file system

In Linux, the kernel supports various file systems through VFS.
Recently, the Log-Structured File System (LFS) has been widely
used due to its improved read and write performance based on
sequential write policies [12]. LFS manages data by dividing the
entire storage space on the file system into segments. The segment
is again divided into a free segment that can record data, a valid
segment where only valid data exists, and a dirty segment where
unnecessary data exists. The file system obtains a free segment from
the dirty segment through cleaning operation. Checkpoint is the
process of storing metadata in the current file system to maintain
data consistency in the file system. One widely used LFS is F2FS [7].
It was designed to perform flash storage devices more efficiently
and provides a summary of the current file system status. In IoLens,
we provided the status and internal events of the file system so that
users can readily understand the behavior of the file system.

2.1.3 Meaning of I/O performance

I/O performance is represented by system metrics such as throughput
and latency [5]. Throughput is bandwidth and IOPS (input/output
operations per second), both important metrics in storage. Band-
width is calculated as IOPS∗Chunksize, usually in MB/s. Latency
is the response time to a single I/O request, which is the time it
takes for the i/O request to complete. While average latency is
important, long or tail latency is critical in determining the user
experience [4]. Queue depth is an index of how many I/O requests
are being processed (in-flight I/O). If the queue depth is high, it is
likely that the storage disk is not capable of handling many requests
due to insufficient performance. In this case, the latency becomes
longer because of the time waiting in the queue. Given that I/O
performance is not solely determined by a single factor, it is im-
perative to comprehensively identify various pieces of information
that can influence performance. In this context, IoLens supports
integrated visual analytics based on diverse system metrics related
to I/O performance.

2.2 Visual Analytics for System Performance

Recent studies provided insights for optimizing and monitoring sys-
tem performances. For example, HPC2lusterScape [11] suggested a
visual analytics system for enhancing resource utilization workload
balance in high-performance computing clusters for big machine
learning models. Shilpika et al. [13] utilized streaming functional
data analysis for real-time hardware system monitoring. Meulder
et al. also studied performance monitoring in cloud computing,
focusing on the individual behavior of computing nodes [10] and
suggested visualization methods to analyze the I/O traces in high-
performance computing [9]. However, to the best of our knowledge,
the visualization community lacks a comprehensive analytics system
that specifically focuses on the storage I/O tracking process. Seek-
watcher [8] is a tool that visualizes key performance metrics based
on the output of blktrace. Nevertheless, these performance metrics
alone are not sufficient to debug storage-related issues. The aim of
our research is to fill this gap.



3 TASKS AND REQUIREMENTS

We conducted a preliminary semi-structured interview with three
engineers with more than six years of experience in I/O performance
optimization. The content of the interview included performance
analysis procedures, improvements to the existing analysis process,
and information that is easy to miss when analyzing performance.
Throughout the interview, we mainly focus on revealing (1) the
importance of considering various data in I/O performance analysis,
and (2) the inconvenience of representing data using charts. Based
on the results, we established the following tasks and requirements.

3.1 Tasks
(T1) Understanding overall I/O traces. When users analyze I/O
performance, they should be able to identify the overall workload
along with performance indexes. Users should also be able to obtain
detailed information at specific time periods.
(T2) Detect anomalies related to performance. In system I/O per-
formance analysis, scrutinizing anomalies enables the early detection
of deviations from the normal operation of the system, facilitating
the early identification of potential problems. Also, anomaly analy-
sis aids in recognizing unexpected situations, such as performance
degradation or system errors, and helps find appropriate improve-
ments. Thus, users should be able to detect unexpected anomalies
related to system I/O performance without much attention, ensuring
that visualizations effectively distinguish anomalies from normal
patterns.
(T3) Compare the indicators of the system. Users should be able
to compare whether there is a correlation between system metrics.
They also need to compare the data of the user-specified timeline
with the overall data. This comparative analysis is essential to
identify anomalies and resolve performance degradation issues.

3.2 Requirements
(R1) Provide an overview of I/O processing (T1). When analyzing
a system, users tend to visualize only specific information they deem
significant. However, users may overlook valuable details in this
approach. Therefore, in order to facilitate users to gain unexpected
insights, the system should comprehensively depict the overall sys-
tem information. In addition to visualizing I/O performance data,
the tool may offer an overview of I/O performance by combining
related data to understand the overall context of I/O traces. The
tool should also allow users to obtain detailed information about a
specific time period.
(R2) Select the visual channels that maximize information de-
livery and legibility (T1, T2). Selecting the appropriate channel
based on the data characteristic is crucial for effectively delivering
information to users. In this tool, the application of suitable channels
for visualizing information is determined through expert interviews,
considering the nature and significance of each dataset. It is essential
to contemplate whether the graph aims to illustrate temporal trends,
distribution patterns, or other aspects. Additionally, visual legibility
and the user’s immediate comprehension must be taken into account.
Ensuring that information is conveyed clearly and is easily inter-
pretable enhances user understanding of the data and facilitates the
identification of inherent patterns and anomalies. In instances where
it enhances analysis, the tool should concurrently support multiple
channels within a singular chart as required.
(R3) Visualize data with minimal loss (T1, T2). With tens of
thousands of I/O requests occurring per second, a substantial volume
of log data is generated. In order to extract meaningful information
from this data, the tool should provide effective data visualization
that takes into account both the quantity and complexity of the in-
formation. Furthermore, it is significantly important to ensure that
all data, especially outlier data, is neither overlooked nor deleted.
Outlier data is defined as values that deviate from the usual opera-
tional patterns, and this is often closely associated with anomalies.

These outlier values can represent unexpected events, system issues,
or other crucial information. Effectively identifying and analyzing
outlier data allows users or administrators to pinpoint abnormal
system behavior or exceptional situations in the system and to take
appropriate actions. Therefore, safeguarding against the inadvertent
exclusion or removal of any data, including outliers, is inevitable for
a meticulous analysis.
(R4) Support users to compare system metrics (T2). The system
should be structured to clearly distinguish anomalies related to sys-
tem performance. For this purpose, anomalies need to be distinctly
separated from usual patterns. To enhance the efficiency of analysis
within the visualization, relevant information is consolidated, while
unrelated information is presented independently. Additionally, rep-
resenting all charts over time facilitates easy observation of patterns
in the indicators.
(R5) Support comparison of partial and total data (T3). The
tool should support users in comparing the part of the data with
the entire data. The comparative feature enables users to gain a
detailed understanding of the system’s behavior at specific points
in time or under particular conditions. The selection of partial
data allows users to obtain profound insights into specific events or
performance anomalies. Comparing this partial data with the entire
data helps the analysis of the system’s overall behavioral patterns.
This functionality serves as an advantageous tool for users, allowing
them to focus on specific aspects of the system while considering
the broader context, facilitating in-depth performance analysis.
(R6) Support correlation between metrics of system (T3). The
system may support functionality to visualize and quantify the cor-
relation between the metrics of the system selected by the user.
This feature is beneficial for understanding the interactions among
various aspects of the system, allows users to visually confirm the
correlations between specific items and provides a quantitative un-
derstanding, enabling users to comprehend the overall behavior of
the system more effectively.

4 IOLENS

We present IoLens, a visual analytics tool to analyze storage I/O
tracking processes. IoLens is designed as a dashboard served by
a single webpage, where we used D3 [2] and React for the imple-
mentation. We first explain how the data is preprocessed (Sect. 4.1).
We then describe how two main views—metric view (Fig. 1A) and
summary view (Fig. 1B)—are designed (Sect. 4.2, 4.3).

4.1 Preprocessing
We use the Linux 6.7.0 rc2 version of the kernel and collected system
logs through several tools provided by the kernel. For example, I/O
stack information is acquired through f2fs status and ftrace, and
CPU and memory resource usage are recorded using top. We create
a scenario to explore how high system resource usage can affect
I/O performance. To create random scenarios, we use stress as a
tool to load CPU and memory, and fio as an I/O benchmark tool.
We set the conditions to random numbers to generate a random
workload. Acquired data is parsed as a JSON file to be processed by
web technology.

4.2 Metric View
The metric view is designed to support users in analyzing various
system metrics (e.g., CPU utilization). The view acts as a grounded
basis for overall I/O tracking process analysis. Charts corresponding
to different metrics are provided within the view. We carefully
designed the charts (e.g., heatmap for CPU and LBA; cumulative
stacked area chart for F2FS Segment) to suit the characteristics of
each metric. All charts are linked, sharing the same time axis. Users
can check how other system metrics look at the specific timeline
they want to analyze through the brushing. Moreover, users can use
the checkboxes to toggle the charts they want to see. Note that we



Figure 3: CPU utilization with cumulative stacked chart, showing the system’s CPU utilization over time. sys and usr refer to CPU resources used
in kernel space and user space, disk refers to time spent waiting for I/O peripherals, and idle refers to time spent in idle operations. Hovering the
mouse displays the top three file system functions with the highest CPU usage at that second. Clicking the split button switches to a heatmap
chart showing usage by core.

placed the metric view on the left while the summary view is placed
on the right. This is because, during our iterative design process, we
found that users first became interested in the overall performance
and then looked into summarized information.

4.2.1 Performance Chart
The performance chart (Figure 1-C) provides throughput and la-
tency info, which are directly related to system I/O performance
(Sect. 2.1.3). As the primary objective is I/O performance analysis,
we positioned it at the top of the screen to grab the user’s attention
first. Among performance metrics, latency is the processing time for
requests and may have abnormally long tail latency depending on
the situation. When analyzing I/O performance, we need to focus
on tail latency which directly affects the user experience. And we
subdivided it into 99% and 99.99% to distinguish the level of tail
latency. We expressed throughput as a line graph while using an area
chart to express latencies. Since 99.99% of latency includes 99%
latency, there is no part that is not expressed, even when drawn as an
area graph. Contrast colors were used to clearly see the difference
between 99% and 99.99% latency.

4.2.2 CPU Utilization Chart
The processing of I/O requests involves computation, and a shortage
of computational power can result in delays in I/O processing. In-
deed, when undertaking performance analysis, it is crucial to verify
the availability of adequate CPU resources. CPU chart provides
CPU utilization information in two different formats: heatmap (Fig-
ure 1-D) and cumulative stacked area chart (Figure 3), which users
can toggle between by clicking the top-left toggle button. The cu-
mulative stacked area chart shows different CPU utilization such
as kernel space, user space, disk wait, and idle. The cumulative
area chart is selected considering that the overall CPU utilization
is a constant determined by the system, and the system used in the
experiment consisted of 8 cores, so the maximum value is expressed
as 800%. Additionally, when users hover over the stacked area chart,
the tool shows which file system functions are active at a given
point in time. If CPU and memory resources are insufficient due
to file system operations, it is reasonable to suspect functions that
require a significant amount of computation first. If the prediction is
accurate, the root cause of the problem can be quickly identified and
addressed. It provides information on the top 3 functions of file sys-
tem with the highest CPU utilization at that specific moment. This
cumulative stacked area chart allows users to understand how total
CPU resources are distributed across these four areas. However, this
approach shows overall CPU utilization, so it will end up showing
average CPU usage both when certain cores are highly utilized while
other cores are idle and when all CPU cores show overall average
usage.

To address this issue, we also provide CPU usage information on
a per-core basis in the form of a heatmap. It’s possible to present

a core-specific cumulative chart, but it’s become too complicated.
We chose the heatmap because the small-split cumulative chart
didn’t really show any meaningful information related to overall
CPU utilization. In this heatmap, CPU core utilization is visually
represented, with higher usage displayed in red and idle usage in
blue for easy identification. Additionally, to allow users to easily
determine which CPU cores were most used and most idle during
the entire time frame, we sort and display core usage in descending
order for the entire duration.

4.2.3 Memory and File system status Chart
The performance of I/O can be influenced by the system’s condi-
tion. When there is insufficient memory, frequent memory eviction
restricts caching capacity, and occasionally, additional I/O requests
are generated internally during the file system cleaning process. In
such instances, a user’s I/O request may experience delays. Memory
utilization data and the status of file system data are classified into
specific categories within the same domain. Memory is divided
into used memory, buffer/cache memory, and free memory (Fig-
ure 4), and the F2FS segment is divided into the valid segment, dirty
segment, prefree segment, and free segment. When the data of all
categories are added together, the sum always comes out to 100%, so
it is expressed as a cumulative stacked area considering these charac-
teristics. Contrast color maps were selected so that the stacked areas
were clearly distinguished, and the free data was expressed in white
to emphasize more important factors and to avoid confusion caused
by using too many colors. File system status charts (Figure 1-E)
show when segment cleaning events occur for garbage collection
with solid lines and checkpoint events for file system consistency
with dotted lines, so that the user can easily grasp the time when the
segment changed.

4.2.4 LBA access and Queue counts Chart
When bottlenecks occur due to the concentration of I/O requests at
a given moment, users can consider several ways to improve I/O
performance. For example, users can improve overall I/O perfor-
mance by switching to faster storage devices at additional cost, or
by analyzing and optimizing workloads. To determine which factors
to improve, users need to understand the storage’s address access
patterns and queue information. Initially, we attempted to represent
all LBA access and queue count information using a scatter plot.
However, since a general I/O trace is hundreds of thousands of data
per second, using a scatter plot to visualize hundreds of seconds
of data was difficult. Additionally, if multiple dots overlapped in
a specific area on the scatter plot, it was hard to know how many
dots were there. Therefore, to solve these problems, LBA access
patterns and queue numbers are compressed and displayed as a heat
map (Figure 1-F, 4). The heat map represents the aggregation of the
frequency of LBA access and queue counts every second. Higher
frequencies are depicted in red, while lower frequencies are shown



Figure 4: Charts showing memory usage and the number of I/Os
waiting in the queue. The memory chart is classified into free, used,
and cache according to memory properties, and the queue count
chart expresses the concentration of waiting I/O as a heat map.

in blue. To minimize data loss, data with a value of 1 and data with a
value of 0 are expressed in blue and white, respectively. The heatmap
provides immediate insight into which values were accessed more
frequently at specific timelines based on color. However, under-
standing the overall distribution of values is not straightforward. For
example, in the heatmap of LBA access patterns (Figure 1-F), the
address range between 37M and 43M appears to be the most ac-
cessed over the entire period. However, when examining the overall
statistics, it becomes apparent that there was a significant amount of
access near address 5.2M as well. Therefore, to allow users to easily
identify the overall distribution, we provide a histogram on the right
y-axis (Figure 1-F’).

4.3 Summary View
After understanding the overall workload in the metric view on the
left, when performing detailed analysis, it is necessary to check
numerical values related to key information or compare various
pieces of information. The summary view provides a radar chart
that allows the user to compare the area of interest with the entire
area, and hovering the label displays accurate numbers on the screen.
Additionally, it provides a function to convert to plain text so that
users can intuitively check numerical values. It also provides corre-
lations to analyze correlations between metrics that are difficult to
understand in a metric view.

4.3.1 Correlation Chart
IoLens allows users to check the correlation between performance-
related metrics through a correlation chart (Figure 1-H). The corre-
lation chart is implemented using the contour plot and the scatter
plot together. The scatter plot intuitively shows the distribution of
data, and the contour plot effectively expresses the density. The
user can visualize the correlation between the two selected metrics
by selecting the x and y-axis items of the correlation chart. Areas
with high distribution density are shown in red, and areas with low
distribution density in blue. In addition, since the correlation chart is
linked to the charts on the left, it is updated in real-time to show the
correlation within the selected data when the user uses the brushing
interaction. In addition, intuitive quantitative values are provided
together by calculating and showing the R2 value in the upper right
of the chart.

4.3.2 Summary Radar Chart
The summary radar chart (Figure 1-G) provides summarized in-
formation for six indicators of the system. Initially, it provides
summarized data for the entire dataset (indicated in red). When
the users brush on the left chart, additional summarized data for
the brushed area is provided (shown in blue). It enables users to
compare the total data and the brushed area’s data. Users can also
quantitatively compare total and brushed data by hovering over the
name of the indicator. Additionally, if the user wants to compare
the summarized information only in numbers, they can toggle the

button at the top left to view the values of the entire data or brushed
data only in numbers.

5 USAGE SCENARIO

We provide a usage scenario with IoLens analyzing system I/O per-
formance. We will now follow Susan, a system engineer working
on system kernels. Here, Susan wants to find storage I/O perfor-
mance degradation points and causes. For this purpose, she loads
preprocessed data (Sect. 4.1) and starts an analysis.

At first, Susan looks at the performance chart (Figure 1-C). She
finds that there is a gap between the latency 99.99% chart and
the latency 99% chart at 1275 seconds, and the throughput de-
creases(Figure 1-1). The gap between latency 99% and latency
99.99 % means that the processing of some I/O requests has been
delayed, resulting in a long latency. She thinks this is a point of
performance degradation points and brushes the timeline to find the
cause. The brushed timeline then displays the same time zone area
of other charts so that the user can intuitively know the status of
other indicators. While looking at various charts linked with brush,
she finds an anomaly in the F2FS chart (Figure 1-E). An orange
area and dashed line which is prefree segments and checkpoint event
(Figure 1-2). At this point, dirty segments are converted to a free
block through a prefree segment due to checkpoint. Through this,
she concluded that the cause of the performance decrease was the
occurrence of checkpoints.

As seen in the above scenario, IoLens can help users readily
identify the cause of performance degradation through a brush linked
to all charts. It is worth noting that this can hardly be done with the
previous approach, which is to examine only the information of a
specific layer at once. In this case, to find the cause of performance
degradation as in the above scenario, users should look at the system
log that has throughput and latency information and find points of
performance degradation. Then, the expert may look at the part of
the I/O-related information that is suspected to be the cause. At
this time, if F2FS information is not provided, it is difficult to find
the cause that Susan found in the above scenario. Therefore, if the
workload is unfamiliar or the analyst is not sufficiently experienced,
it may take a long time to determine the cause of performance
degradation with the current practice.

5.1 User Study

5.1.1 Study Design

Participants. Four domain experts are recruited for the user study.
Note that we recruited domain experts as IoLens is designed mainly
for the experts. Two of them are Ph.D. students (E1, E2) majoring
in computer science and engineering at a local university. The other
two (S1, S2) are software engineers working for one of the leading
chip manufacturers in the world. All participants have more than six
years of experience in analyzing storage I/O.
Procedure. Every study was conducted in person. The detailed
procedure is as follows: First, we briefly explained the purpose
and the overall design of IoLens. We then demonstrate all the
features of the tool. For example, we explained how all charts are
linked through brush and what information each chart provides.
Afterward, we asked participants to use IoLens freely to search
for interesting findings or insights. The participants were guided
to “think-aloud” their thoughts during the trial. After the trial, we
conducted a post-hoc interview, asking for overall satisfaction and
the possible improvements for IoLens.

5.1.2 Results and Discussions

Detecting the causes of performance degradation. At first, all par-
ticipants mainly focused on the performance chart. Then brushed the
timelines when there was a difference between the latency 99.99%



graph and the latency 99% graph in the performance chart (Fig-
ure 1C) or when the throughput got lower. After brushing the time-
lines, which is the point of performance degradation, participants
compared the status of other charts at that time. Participants also
checked the summary chart and correlation chart during the analysis.
We observed that experts easily identified the cause of the perfor-
mance degradation in Figure 1-1 by looking at an event (Figure 1-2)
in which a dirty block changes to a free block due to a checkpoint in
the brush-connected F2FS chart. Additionally (S1) said that fluctua-
tion in the 1,100 second range seemed to be related to the checkpoint
event in F2FS Segment. All participants said that the brushing fea-
ture linked with all charts allows the user to see various information
at a glance, which is very helpful to quickly determine whether the
system metric is related to performance degradation or not. (S2)
said it was fascinating because this type of analysis had never been
done before. Overall, participants commented that the cause would
have been difficult to find without background knowledge that tail
latency could be further delayed due to the internal operation of the
file system, but the visualized information provided by IoLens was
very intuitive and easy to identify.
Usefulness of the visualization design In F2FS segment chart (Fig-
ure 1E), E1 and S1 mentioned that using different colors in each
status makes it easier to identify changes in segments. They said it
was interesting to be able to see I/O performance and F2FS status
together. E2 and S2 said that the histogram on the right (Figure 1F’)
of the LBA heatmap chart (Figure 1F) is useful as it provides infor-
mation about the rate of accessing the data and the rate of accessing
metadata. All participants acknowledged that the approach of pro-
viding which functions are performing the most calculations on the
CPU at a given time through mouse hovering (Figure 3) can provide
meaningful information for analysis. E2 said that the fact that CPU
utilization information is provided not only overall, but also by core,
makes it easier to identify when only a specific CPU is heavily used
and the rest are underutilized.
Post-hoc Feedback All participants said that for familiar I/O work-
loads that they often analyze, a performance chart or summary
information provided in plain text from benchmarks are sufficient
to predict and identify the cause of the performance degradation.
However, when new workloads are encountered with unknown char-
acteristics, it is difficult to pinpoint the cause of performance degra-
dation without newly analyzing the overall data. They mentioned
that IoLens, by presenting various charts linked with a brush on
a single screen, makes it easier to understand the characteristics
of unfamiliar workloads and identify the reasons for performance
degradation at specific points. Three experts (E1, S1, S2) acknowl-
edged that IoLens is useful when deciding which layer to optimize to
improve I/O performance. In particular. E1 explained the following
scenario: “If a user brushes when throughput is saturated, CPU
and memory utilization may be low and the CPU’s disk wait time
and queue counts may be high. Then, the user can confirm that the
CPU and memory do not limit performance, but the performance
of the storage device may limit throughput. As a result, users may
consider replacing the storage with higher performance storage to
improve I/O throughput.” The participants also provided sugges-
tions for further enhancement of our tool. For example, E1 and S2
suggested adding more options to the radar chart to allow users to
select options. S1 was interested in the correlation chart(Figure 1H)
and suggested that it would be useful if more various metrics were
added to the chart.

6 CONCLUSION

In this study, we propose a visual analytics tool that incorporates
various layers in the kernel I/O stack. Unlike current practice, which
visualizes only a single layer, IoLens can help identify various events
that occur during the processing of I/O requests. Moreover, IoLens
helps users understand the overall workload on the system, examine

when the anomalies happen, and determine how they impact system
performance. IoLens thus provides an extended perspective towards
the I/O performance analysis process. Our usage scenario and user
study validate the effectiveness of the system.

We plan to extend the system coverage of IoLens. We would also
like to improve it to a scalable chart by adding some functions. First,
we automate the visual analysis process from data collection and
extend it to a dynamic chart that processes real-time updated data.
Also, we add the ability for users to navigate specific time frames.
IoLens can be a more sustainable and widely available tool.

REFERENCES

[1] J. Axboe. Flexible io tester (fio). https://github.com/axboe/fio. Ac-
cessed, 13:12–19, 2019.

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE transactions on visualization and computer graphics,
17(12):2301–2309, 2011.

[3] A. D. Brunelle. Block i/o layer tracing: blktrace. HP, Gelato-Cupertino,
CA, USA, 57, 2006.

[4] J. Courville and F. Chen. Understanding storage i/o behaviors of mobile
applications. In 2016 32nd Symposium on Mass Storage Systems
and Technologies (MSST), pp. 1–11, 2016. doi: 10.1109/MSST.2016.
7897092

[5] B. Hou, F. Chen, Z. Ou, R. Wang, and M. Mesnier. Understanding
i/o performance behaviors of cloud storage from a client’s perspective.
ACM Trans. Storage, 13(2), may 2017. doi: 10.1145/3078838

[6] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubrama-
niam. Hybridstore: A cost-efficient, high-performance storage sys-
tem combining ssds and hdds. In 2011 IEEE 19th Annual Interna-
tional Symposium on Modelling, Analysis, and Simulation of Computer
and Telecommunication Systems, pp. 227–236, 2011. doi: 10.1109/
MASCOTS.2011.64

[7] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A new file system
for flash storage. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), pp. 273–286. USENIX Association, Santa
Clara, CA, Feb. 2015.

[8] C. Mason. Seekwatcher. URL http://oss. oracle. com/˜ ma-
son/seekwatcher, 2008.

[9] C. Muelder, C. Sigovan, K.-L. Ma, J. Cope, S. Lang, K. Iskra, P. Beck-
man, and R. Ross. Visual analysis of i/o system behavior for high-end
computing. In Proceedings of the Third International Workshop on
Large-Scale System and Application Performance, LSAP ’11, p. 19–26,
2011. doi: 10.1145/1996029.1996036

[10] C. Muelder, B. Zhu, W. Chen, H. Zhang, and K.-L. Ma. Visual analysis
of cloud computing performance using behavioral lines. IEEE Trans-
actions on Visualization and Computer Graphics, 22(6):1694–1704,
2016. doi: 10.1109/TVCG.2016.2534558

[11] H. Park, A. Cho, H. Jeon, H. Lee, Y. Yang, S. Lee, H. Lee, and J. Choo.
Hpcclusterscape: Increasing transparency and efficiency of shared
high-performance computing clusters for large-scale ai models. arXiv
preprint arXiv:2310.02120, 2023.

[12] M. Rosenblum and J. K. Ousterhout. The design and implementation of
a log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52,
feb 1992. doi: 10.1145/146941.146943

[13] Shilpika, T. Fujiwara, N. Sakamoto, J. Nonaka, and K.-L. Ma. A visual
analytics approach for hardware system monitoring with streaming
functional data analysis. IEEE Transactions on Visualization and
Computer Graphics, 28(6):2338–2349, 2022. doi: 10.1109/TVCG.
2022.3165348

[14] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A flexible framework
for file system benchmarking. login Usenix Mag., 41(1), 2016.

[15] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth. Scalable i/o tracing
and analysis. In Proceedings of the 4th Annual Workshop on Petascale
Data Storage, PDSW ’09, p. 26–31, 2009.

[16] Z. Yang, M. Awasthi, M. Ghosh, J. Bhimani, and N. Mi. I/o workload
management for all-flash datacenter storage systems based on total cost
of ownership. IEEE Transactions on Big Data, 8(2):332–345, 2022.
doi: 10.1109/TBDATA.2018.2871114


	Introduction
	Background and Related Work
	The Understanding of Storage Device I/O
	Kernel I/O stack
	Log-structured file system
	Meaning of I/O performance

	Visual Analytics for System Performance

	Tasks and Requirements
	Tasks
	Requirements

	IoLens
	Preprocessing
	Metric View
	Performance Chart
	CPU Utilization Chart
	Memory and File system status Chart
	LBA access and Queue counts Chart

	Summary View
	Correlation Chart
	Summary Radar Chart


	Usage Scenario
	User Study
	Study Design
	Results and Discussions


	Conclusion

