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Fig. 1: The comparison between the way of estimating the perceptual variability in conducting visual clustering, i.e., cluster ambiguity,
of monochrome scatterplots. Without CLAMS (β), we need to ask people to conduct visual clustering (colored scatterplots with β;
color labels depict visual clustering results) and check whether the results are consistent (i.e., clear) or not (i.e., ambiguous). This
approach requires extensive time and human resources. In contrast, CLAMS (α), which is constructed over perceptual data and a
feature engineering based on a user study, automatically produces a score representing cluster ambiguity of an input scatterplot, where
low and high scores correspond to clear and ambiguous cluster structure.

Abstract— Visual clustering is a common perceptual task in scatterplots that supports diverse analytics tasks (e.g., cluster identification).
However, even with the same scatterplot, the ways of perceiving clusters (i.e., conducting visual clustering) can differ due to the
differences among individuals and ambiguous cluster boundaries. Although such perceptual variability casts doubt on the reliability
of data analysis based on visual clustering, we lack a systematic way to efficiently assess this variability. In this research, we study
perceptual variability in conducting visual clustering, which we call Cluster Ambiguity. To this end, we introduce CLAMS, a data-driven
visual quality measure for automatically predicting cluster ambiguity in monochrome scatterplots. We first conduct a qualitative study to
identify key factors that affect the visual separation of clusters (e.g., proximity or size difference between clusters). Based on study
findings, we deploy a regression module that estimates the human-judged separability of two clusters. Then, CLAMS predicts cluster
ambiguity by analyzing the aggregated results of all pairwise separability between clusters that are generated by the module. CLAMS
outperforms widely-used clustering techniques in predicting ground truth cluster ambiguity. Meanwhile, CLAMS exhibits performance
on par with human annotators. We conclude our work by presenting two applications for optimizing and benchmarking data mining
techniques using CLAMS. The interactive demo of CLAMS is available at clusterambiguity.dev.

Index Terms—Cluster, scatterplot, perception, cluster analysis, cluster ambiguity, visual quality measure.

1 INTRODUCTION

Clustering is a key analytic task in scatterplots [57, 81, 82]. It occurs
when we infer structure in data by identifying groups (i.e., clusters)
based on the pairwise proximity between data points [4]. Visual clus-
tering occurs when people infer these groups visually, such as finding
neighborhoods of points in a scatterplot. It is among the most com-
mon perceptual tasks people conduct with scatterplots [64]. Diverse
domains, such as bioinformatics [69, 70] and machine learning [34],
leverage visual clustering for data analysis. These applications include
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the identification of ground truth clusters for benchmarking data min-
ing techniques, such as automatic clustering [7, 81] and dimensionality
reduction techniques [19, 82].

While visual clustering supports a range of applications, cluster
ambiguity—the intrinsic perceptual variability in visual clustering due
to unclear cluster boundaries—can introduce uncertainty or even errors
in applications relying on visual clustering. For example, cluster ambi-
guity can make data analysis unreliable. If a scatterplot is highly am-
biguous, it is easy to make multiple conclusions about cluster structure
within the data. Ambiguity also reduces the reliability of establishing
ground truth clusters based on human perception for benchmarking data
mining techniques: if each person perceives cluster structure differently,
we cannot know which structure is “correct.”

However, most studies and models of visual clustering focus on how
people perceive clusters in general [2, 78, 81]. For example, Gestalt
principles [78] explain how people “commonly” or “generally” group
visual objects within a complex scene [54]. Studies examining average
cluster perception support visualization designers in building effective
systems that most people can use [42,50,77]. However, they do not offer
solutions to deal with the challenges in data analysis and benchmarking
imparted by cluster ambiguity. Designers thus need a more systematic
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way to assess cluster ambiguity.
A reliable method to evaluate the ambiguity of a scatterplot is directly

measuring perceptual variability via human experiments [26]. However,
this process is costly and not scalable. As an alternative, we can use
clustering techniques to mimic human perception [6, 67] (Sect. 2.2).
Assuming that a clustering technique with a specific hyperparameter
setting represents a human’s perception, this method mimics human
variability by running the technique under various hyperparameter
settings. This approach is scalable but at the cost of accuracy due to
the lack of human input (Sect. 5.2).

This research presents a scalable and accurate method to evalu-
ate cluster ambiguity through a visual quality measure (VQM) called
CLAMS. We design CLAMS based on a dataset gathered from human
input about the separability of clusters [2]. We construct CLAMS in
two steps: first, we conduct a user study to investigate important factors
that influence visual clustering. Second, based on the study findings,
we train a regression module estimating how human subjects separate
clusters. Given a scatterplot, CLAMS computes the separability of
every pair of identified clusters using the regression module. The mea-
sure then aggregates the computed pairwise separabilities of clusters to
predict how ambiguously the clusters are portrayed by human subjects.

Our quantitative experiments show that CLAMS is more accurate
than existing models in predicting cluster ambiguity. First, an abla-
tion study verifies the accuracy of the regression module, validating
our user-study-driven approach in constructing the module. Moreover,
we find that the ranking of scatterplots set by CLAMS has a strong
correlation with the ground truth ranking constructed from 20 partic-
ipants in our study. Furthermore, CLAMS outperforms an average
human annotator in estimating cluster ambiguity. We also present two
applications of CLAMS in optimizing and benchmarking data mining
algorithms. First, we propose AmbReducer, an optimization system
that reduces the ambiguity of dimensionality reduction embeddings
while maintaining accuracy. AmbReducer helps analysts effectively
interpret high-dimensional data by informing cluster ambiguity. Sec-
ond, we show how our measure can help select reliable benchmark
datasets for comparing different clustering techniques. Findings from
our experiments and applications open up discussions on leveraging
perceptual variability in visualization research.

2 BACKGROUND AND RELATED WORK

We survey past work about visual clustering in scatterplots, visual
quality measures, and perceptual variability. These works collectively
illustrate the necessity of CLAMS.

2.1 Cluster Perception in Scatterplots
Given the broad applications for visual clustering, several previous
works have concentrated on understanding and modeling cluster per-
ception. For example, eye-tracking was used to detect what aspects
of a dataset people use for cluster identification, highlighting the role
of Gestalt principles, especially proximity and closure [20]. Scatter-
Net captures perceptual similarities between scatterplots to emulate
human clustering decisions [43]. Scagnostics identify scatterplot pat-
terns, including cluster structure [15], but cannot reliably reproduce
human perception [1]. In ClustMe [2], Abbas et al. computationally
modeled human perception in judging the complexity of the cluster
structure in scatterplots, which affects by the number of clusters and
the nontriviality of patterns. Quadri & Rosen studied various factors
that influence the perception of clusters. Relying on these factors, they
built explainable models of how humans perceive cluster separation
based on merge tree data structures from topological data analysis [57].

These studies aim to characterize cluster perception processes, the
factors that influence cluster perception, and the relation between these
factors and scatterplot design. However, visual clustering in scatterplots
lacks any ground truth; we cannot always categorically determine which
group of points forms a cluster. Underlying data characteristics lead to
ambiguity in cluster structure (i.e., cluster ambiguity), causing intrinsic
variability in the clusters people detect. We thus develop a VQM that
automatically estimates cluster ambiguity for a wide range of cluster
patterns. We then explore and rank the cluster ambiguity of scatterplots.

2.2 Visual Quality Measures on Cluster Perception

The visualization community has proposed and developed various Vi-
sual Quality Measures (VQMs) [9, 10] that metricize the specific char-
acteristics of cluster patterns in scatterplots. These metrics enable
analysts to rapidly evaluate their scatterplots in terms of supporting
general pattern exploration [11] or a specific perceptual task [4], and
can also be used to optimize scatterplots [56].

A naïve approach in designing VQMs is to reuse existing algorithms
(e.g., clustering techniques), where the performance of the algorithm
is evaluated against the results of human experiments. Aupetit et al.
investigated how well clustering techniques can mimic (i.e., model)
visual clustering by testing the extent to which 1,400 variants of clus-
tering techniques can reproduce the human separability judgments [7].
Sedlmair & Aupetit proposed a framework for evaluating class sepa-
rability measures based on human-judged class separability data and
used the framework to test 15 class separation measures [67]. The
framework was later extended to test a large set of class separability
measures, which were constructed as combinations of 17 neighborhood
graph functions and 14 class purity functions [6]. However, reusing
existing algorithms does not directly reflect human perception, thus
often performing poorly in imitating human perception [2] (Sect. 5.2).

VQMs can be instead designed to target a specific pattern or a per-
ceptual task. For example, Quadri & Rosen [57] developed a threshold
plot based on their modeling of cluster perception. Threshold plots
tell the extent to which clusters are salient in an input scatterplot. De-
signers can use these plots to enhance the effectiveness and efficiency
of a scatterplot for visual clustering [56]. ClustMe [2] also produced
a VQM simulating human perception in judging the complexity of
cluster patterns. Specifically, ClustMe models human perception based
on experimental data on perceived cluster separability judged by mul-
tiple subjects. We apply this modeling approach and the perceptual
data from ClustMe to guide our model. However, ClustMe regards the
judgments of multiple subjects as a binary decision (i.e., separated or
not separated), estimating a general complexity perceived. In contrast,
CLAMS summarizes the judgments made by subjects as a continuous
probabilistic function for the sake of estimating the variability of the
judgments (i.e., cluster ambiguity). Estimating variability helps us
understand the distribution of human visual percepts, enabling related
applications to more accurately reflect perception.

2.3 Perceptual Variability

Due to perceptual variability among individuals, the perception of clus-
ters can differ even with the same scatterplot. Perceptual variability
refers to individuals’ “traits or stable tendencies to respond to certain
stimuli or situations in predictable ways” [18]. Prior work on percep-
tual variability demonstrated that people exhibit observable differences
in task-solving and behavioral patterns [79]. Psychology and vision
research have shown that people exhibit substantial variability on tasks
such as pattern identification, judgments, or adjustments [28, 29, 51].
Given the significance of perceptual variability in information visualiza-
tion [16,86], recent research explores when, where, and how perceptual
variability influences visualization use (see Liu et al. [41] for a survey).

Perceptual variability can influence the reliability of any generalized
model of perception [84]. The Axiom of Perceptual Variability suggests
that the success of such generalized perceptual theories depends on
their ability to account for variance in perceptual representations [5].
Moreover, the perceptual variability of a certain task may degrade the
credibility of the applications relying on visual clustering (Sect. 1).
Visual clustering is an ill-posed problem, where there is no "ground
truth" for clusters (i.e., it is not always possible to determine a “correct”
clustering). Generalized models and applications of visual clustering
are thus likely to be more vulnerable to perceptual variability. We
believe that our modeling of perceptual variability in visual clustering
(i.e., cluster ambiguity) not only enhances our understanding of cluster
perception but also resolves the vulnerabilities of such models and
applications.



(INPUT)�Monochrome
Scatterplot

Gaussian�Components

Step 1 (Scatterplot Decomposition)

A

B
C

D

E

FGMM

Component-Pairwise
Separability�Scores

Step 2 (Component-Pairwise Local Ambiguity Computation)

B C D E F
A
B
C
D
E

Component-Pairwise
Local�Ambiguity�Scores

Shannon
entropy

Average

CLAMS
[0,1]

Step 3 (Aggregation)

B C D E F
A
B
C
D
EPretrained 

regression model

(OUTPUT)�
Cluster�Ambiguity

Fig. 2: The CLAMS pipeline (Sect. 3.2). (Step 1) Given a scatterplot, we first apply a Gaussian Mixture Model (GMM) to abstract a scatterplot into a
set of Gaussian components. (Step 2) We estimate component-pairwise separability scores by applying a predefined regression module (Sect. 4)
and convert the scores into local ambiguity scores by applying the binary Shannon entropy function. (Step 3) Finally, we obtain the cluster ambiguity
score of the input scatterplot by averaging the local ambiguity scores.

3 CLAMS
We introduce CLAMS, a VQM for estimating the cluster ambiguity of a
monochrome scatterplot. Trained over perceptual experiment data, our
approach acts as a proxy for human perception. Moreover, by decom-
posing an input scatterplot with a Gaussian mixture model (GMM) and
measuring ambiguity in a component-pairwise manner, CLAMS can
deal with a wide range of cluster patterns while maintaining scalability.

3.1 Design Considerations
Based on a thorough examination of the related work on cluster percep-
tion (Sect. 2.1) and VQMs (Sect. 2.2), we set three design considera-
tions in estimating cluster ambiguity.

(C1) Provide a proxy for human perception: To assess the variability
of people’s perception, the measure should accurately reflect how
people identify and analyze clusters in practice [2,7,57]. Refer to
Step 2 in Sect. 3.2 for how we achieved this consideration.

(C2) Work with a wide range of scatterplot patterns: Scatterplots
have a wide range of cluster patterns; they can have clusters with
diverse characteristics (e.g., shape, density, size) [32] and varying
numbers of clusters [57]. CLAMS should properly estimate the
ambiguity of an arbitrary scatterplot and should properly estimate
cluster ambiguity across a diverse array of patterns [2, 57]. Check
Step 1 in Sect. 3.2 to see how our measure design regards this
consideration.

(C3) Be scalable: To be readily used in practice (Sect. 6), CLAMS
should scale to large numbers of data points and complex pat-
terns [2]. Throughout the entire pipeline (Steps 1, 2, and 3), we
maintain scalability as a key consideration.

3.2 CLAMS Pipeline
We draw on previous approaches (e.g., VQM [2], clustering [25, 60],
dimensionality reduction [36, 75]) to design our measure to (Step 1) de-
compose a given scatterplot into smaller components, (Step 2) compute
component-pairwise local ambiguity scores, and (Step 3) estimate the
global ambiguity score by aggregating the local scores (see Fig. 2). As
the diversity of local components is inherently much lower than that of
the full scatterplot, this decomposition helps CLAMS to readily work
with a wide range of scatterplot patterns (C2).

(Step 1) Scatterplot Decomposition
CLAMS starts by decomposing an input scatterplot into smaller compo-
nents. We use the Gaussian Mixture Model (GMM), which decomposes
a given dataset as a mixture of multidimensional Gaussian distributions.
We select GMM due to several advantages. First, GMM does not
require hyperparameter selection [2]. The number of Gaussian distri-
butions (components) can be automatically determined based on fixed
statistics, such as Bayesian information criteria (BIC) [66]. Moreover,
as each component is represented as a Gaussian distribution, com-
plex patterns can be abstracted into a concise statistical summary (e.g.,

mean, covariance matrix; C2). Note that GMM decomposition has
been shown to be applicable to visual identification problems [2, 3],
accurately representing a wide range of smooth cluster patterns. Finally,
the complexity of GMM for 2D scatterplots is O(NK), where N and
K denote the number of points and components, respectively, ensuring
that the technique is highly scalable (C3).

In contrast, a conventional approach for scatterplot decomposition,
which involves using clustering techniques (e.g., K-Means [38], HDB-
SCAN [45]), falls short in enabling CLAMS to satisfy our target
considerations. First, clustering results can vary significantly due to
the sensitivity of the outcomes to changes in hyperparameters. We
can find an optimal hyperparameter setting using clustering validation
measures [83], but the optimal setting may depend on the selection
criteria [40]. Clustering techniques also provide a partition of data
points, meaning they neither abstract nor simplify clustering patterns.
Lastly, clustering techniques that are widely known to be able to cap-
ture complex patterns (e.g., density-based clustering [45], density-peak
clustering [39]) often suffer from scalability issues.

Note that while applying GMM to the input scatterplot, we determine
the optimal number of Gaussian components based on BIC scores and
the elbow rule. The elbow is found using the Kneedle [65] algorithm.

(Step 2) Component-Pairwise Local Ambiguity Computation

We predict local ambiguity for every pair of Gaussian components so
that CLAMS can consider every possible interaction between compo-
nents. This process is as follows:
Dataset: We use the human-judged cluster separability dataset X
from the ClustMe study [2] (C1). X contains 1,000 scatterplots
{X1, X2, · · · , X1000}, where each scatterplot consists of a pair of
Gaussian components with diverse statistics (e.g., mean, covariance).
The separability scores S = {S1, S2, · · · , S1000} are computed by ag-
gregating the judgments of 34 participants on each scatterplot gathered
by the ClustMe study [2]. These scores reflect the judgments of the
participants regarding whether they saw one or multiple clusters in each
scatterplot. Si represents the proportion of participants who perceived
more than one cluster in Xi.
Deriving Cluster Ambiguity from Separation Score: We compute
the cluster ambiguity of each Gaussian components pair with separation
score S as: A(S) = −S logS−(1−S) log(1−S). Theoretically, A is
defined as the Shannon entropy of a binomial distribution representing
the probabilistic event of counting the number of clusters. We use
entropy as it is an efficient and mathematically grounded function
representing the level of “uncertainty” of the associated event [44]
(C3). A is minimized when S is 0 or 1 (i.e., every participant gave the
same answer, meaning there was no variability in visual clustering),
and is maximized when S is 0.5 (i.e., half of the participants saw a
single cluster and the other half saw more than one cluster, maximizing
variability). As the scatterplots and original separability scores have
proven to be effective in modeling cluster perception [2], we can also
expect the ambiguity scores to reliably represent human perception.



Note that our evaluation validates this expectation (Sect. 5.2; C1).
Predicting Ambiguity: To predict local ambiguity for each Gaussian
component, we train a regression module f estimating the separability
score f(X) of an arbitrary pair of Gaussian components X , using X
and S. For an arbitrary pair of Gaussian components X , the local
ambiguity score of a pair is computed as A(f(X)). Although training
the regression module requires heavy computation (Sect. 4), inferring
local ambiguity scores can be done in constant time regardless of the
number of Gaussian components, making Step 2 scalable (C3). Please
refer to Sect. 4 for a detailed explanation of how we designed and
implemented the model.

(Step 3) Aggregating Local Ambiguity
Finally, we aggregate the component-pairwise ambiguity scores by
averaging the scores. Note that the final score can be interpreted as the
joint entropy of a set of events corresponding to each local ambiguity
score with an assumption that the events are mutually independent.

3.3 Computational Complexity
As the time complexity of GMM on a 2D scatterplot is O(NK), the
time complexity of Step 1 is O(NK2

max), where Kmax is the maxi-
mum number of components we consider in finding the optimal number
of components and N is the number of points. The complexity for both
Steps 2 and 3 is O(K2

opt), where Kopt denotes the optimal number of
components found in Step 1. Thus, the computational complexity of
CLAMS is O(NK2

max +K2
opt). As N ≫ Kmax and N ≫ Kopt, the

effect of Kmax and Kopt is negligible, making CLAMS a scalable mea-
sure that is only linear to the number of points. Refer to Appendix B for
the quantitative experiment demonstrating the scalability of CLAMS.

4 ESTIMATING HUMAN-JUDGED CLUSTER SEPARABILITY

We constructed a regression module to predict the separability of a
given Gaussian components pair. We conducted a user study exploring
the factors affecting visual clustering to ground our model in human
reasoning processes. We trained the model to estimate ambiguity
from the features extracted from each pair, where the features were
engineered based on the study findings.

4.1 Factor Exploration Study
To design features that relate to the human-judged cluster separability,
we first explored factors that affect visual clustering via a qualitative
experiment. In the study, participants completed a series of visual
clustering tasks and reported on factors that affected task results.

4.1.1 Study Design
Procedure and Tasks: The experiment began with informed consent
and a basic demographic survey. Participants completed the rest of the
study in three phases: (1) identifying clusters in a single scatterplot,
(2) performing pairwise comparisons between scatterplots, and (3)
participating in an interview to elicit core factors influencing visual
clustering. In the first phase, we randomly sampled 12 scatterplots
from X and showed them in sequence. For each scatterplot, we first
asked participants to select whether there existed one or more than one
cluster, following the original ClustMe [2] study. We additionally asked
participants about their confidence in their response using a Likert scale
and asked them to describe the reasoning process both for the number
of clusters and their confidence.

In the second phase, we randomly sampled 12 pairs of scatterplots
(24 in total) from X. For each trial, we asked participants to report
which scatterplot in a given pair was more separated. As in the first
phase, we asked for the participants’ confidence and had them report
the reasoning behind their choices and confidence. After the two phases
of the experiment, we conducted a semi-structured post hoc interview,
asking the participants about the salient factors they felt were affected
by cluster separation. All participants finished the experiment within
one hour.
Participants: We recruited 10 participants from a local university
(six males and four females, aged 19–28 [23.5 ± 2.6]). Six of the
participants were undergraduates, three were graduate students, and

one had just completed their Bachelor’s degree. We selected only
participants who had experience in data analysis using scatterplots to
better ground our results in real-world data analysis and to ensure that
they understood the concept of clusters. Three participants reported
that they are at a novice level in data analysis, which meant that they
did not regularly conduct analyses but have some experience. Five
and two participants reported themselves as at intermediate and expert
levels, respectively. Half of the participants reported being at the novice
level of data analysis using a scatterplot and the other half reported
themselves as intermediate. We also confirmed that participants had
not read three papers [2, 3, 7] that incorporate ClustMe data (i.e., X).
Participants were compensated with the equivalent of $20.
Apparatus: The experiment was conducted over Zoom, and the ses-
sions were recorded. We developed a website in which participants
could see scatterplots and make their selection (number of clusters and
confidence) with a mouse click. We fixed the stimuli size to 700px ×
700px and constrained participants to use a laptop or desktop screen to
minimize the impact of the display on study results. They were asked
to access the website and share their screens so that the experimenter
could monitor and guide the experiment.

4.1.2 Results
We analyzed the responses from the main experiment and the post
hoc interview using axial coding done by two authors, one of whom
works in machine learning while the other’s primary expertise is in
visualization. The coders individually developed a separate codebook
in the first stage. Two codebooks were then merged, resulting in 13
total extracted factors. Finally, based on two stages of discussions,
the coders agreed to categorize the codes into six main factors (see
Table 1)—proximity, clarity of gap, density difference, size difference,
ellipticity difference, and direction.

The most important factor was the proximity between the clusters,
which was mentioned by seven out of ten participants in the interviews.
The perception of proximity was mainly affected by the clarity of a gap
between clusters. Participants reported that if the gap between clusters
was bigger and less dense than the clusters, the clusters were perceived
to be more distinct. Five out of ten participants explicitly mentioned
the gap between clusters as an important factor in the interviews.

Participants tended to perceive more than one cluster when two
Gaussian components had noticeably different densities, even if there
was no gap between them or if they overlapped (i.e., when they had
high proximity). However, two participants explicitly noted that if the
density of a point group was too low, the points within the group were
perceived as outliers rather than a cluster. We found that the size dif-
ference between clusters similarly affects visual clustering: if a cluster
was too small, participants often wanted to interpret the cluster as a
set of outliers. In the interviews, 30% (three out of 10) of participants
noted that the differences in density were salient features that affected
their choices, whereas one noted that differences in cluster size played
a role in their decisions.

Ellipticity difference between clusters also affected perceived separa-
bility. Participants mentioned that if the ellipticity of a cluster was high,
it could be fit by linear regression where the regression line accorded
with the major axis of the ellipse, thus would be more likely to be
perceived as a single cluster. We also found that if the two clusters had
high ellipticity, their direction (i.e., the direction of the first principal
axis) also played a crucial role in their separation. Participants noted
that two clusters with high ellipticity and different directions were
likely to fit into two independent regression lines, thus more likely to
be perceived as two independent clusters. In the interviews, five out of
ten participants mentioned ellipticity and direction as salient factors,
while four additionally mentioned linear regression or correlation lines.

4.2 Feature Engineering
We designed features representing the characteristic of a pair of Gaus-
sian components based on the six factors from the study (Sect. 4.1). To
maintain the simplicity and explainability of the model, we aimed to
keep the features as simple and few as possible. We thus designed the
features to be (1) be bijective to the factors and (2) directly computed
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Factors Features Formula Used

Proximity Distance between centers (DC) ∥ x1 − x2 ∥ ⃝

Clarity of a gap Distance-size ratio (DSR) ∥ x1 − x2 ∥ /(
√

∥ a1 ∥2 + ∥ b1 ∥2 +
√

∥ a2 ∥2 + ∥ b2 ∥2) ⃝

Density Difference Density difference (DD) | (n1/(2· ∥ a1 ∥ · ∥ b1 ∥))− (n2/(2· ∥ a2 ∥ · ∥ b2 ∥)) | ×
Size Difference Size difference (SD) |

√
∥ a1 ∥2 + ∥ b1 ∥2 −

√
∥ a2 ∥2 + ∥ b2 ∥2 | ⃝

Ellipticity Difference Ellipticity difference (ED) | (∥ a1 ∥ / ∥ b1 ∥ − ∥ a2 ∥ / ∥ b2 ∥) | ⃝

Direction Angle between components (AC) min(∆θ, 2π −∆θ) where ∆θ =| θ1 − θ2 | ⃝

a1, a2 & b1, b2: Standard deviation along the major & minor axis of Gaussian components / x1, x2: the center of Gaussian components
θ1, θ2: Angle between the major axis of Gaussian components and the horizontal line / n1, n2: number of points in Gaussian components

Table 1: The visual clustering factors revealed by our preliminary user study (Sect. 4.1; first column) and the corresponding features designed for the
regression module predicting the human-judged separability of Gaussian components (Sect. 4.2; second column). The third column depicts how we
compute each feature, and the fourth column represents whether or not the feature is used in the final regression module (Sect. 5.1). Empowered by
the designed features, the module succeeds in precisely estimating the separability scores.

from the statistical summary of the Gaussian components pair (see
Table 1). The features are as follows:
Distance between Centers (DC): For proximity, we selected the dis-
tance between the centers of Gaussian components. We used the dis-
tance between centers as it is the sole metric representing proximity that
can be directly derived from the population statistics (i.e., mean) and is
also widely used for measuring the proximity between clusters [40].
Distance-Size Ratio (DSR): The gap between two Gaussian compo-
nents generally becomes bigger if (1) the distance between the center of
two Gaussian components increases or (2) the size of the components
becomes smaller. We used this property to construct a feature corre-
sponding to the clarity of the gap as the ratio of the distance between
centers of Gaussian components over the sum of the size of two com-
ponents. Note that we defined the size of a component as its standard
deviation—the root sum square of the standard deviations along the
first and second principal axes.
Density Difference (DD): The density difference factor can be directly
represented by computing the density of a component as the ratio of the
number of points over the area covered by the component. We defined
the area of a component as that of an ellipse where the major and minor
axes’ length is identical to the standard deviation along the first and
second principal axes, respectively.
Size Difference (SD): Size difference can be also directly represented
as a feature. We defined the size of the component as its standard
deviation, as we do for the distance-size ratio feature.
Ellipticity Difference (ED): We directly used ellipticity difference as a
feature, defining the ellipticity of a component as the one of an ellipse
having the standard deviation along the first and second principal axes
as major and minor axes’ lengths, respectively.
Angle between Components (AC): Participants reported direction as
salient only if they think two components are heading toward different
directions. We therefore define direction as the angle between compo-
nents, which can be represented as the angle between the first principal
axes of two components.

4.3 Modeling Training
We trained a regression module for estimating human-judged separabil-
ity of Gaussian components pair using X and S. We used a regression
module as we aimed to predict continuous scores. For a given pair
of Gaussian components, the model first extracts the features as de-
fined above and then predicts a separability score from the features.
We implemented our module using AutoML [27] supported by the
auto-sklearn [21] library. We report the performance of our model
and the significance of the extracted features in Sect. 5.1.

5 QUANTITATIVE EVALUATION

We conducted two evaluations to demonstrate the validity and effective-
ness of CLAMS. We first examined the performance of our regression
module and the significance of its features through an ablation study
(Sect. 5.1). We then evaluated the accuracy (Sect. 5.2) of CLAMS by
comparing it against both computational methods for estimating cluster
ambiguity and human annotators.

Excluded feature

orig. DC DSR DD SD ED AC

R2 .9106 .9075 .8574 .9205 .8790 .8758 .9019
Change 0% -0.34% -5.84% +1.08% -3.47% -3.82% -0.95%

(a) Model performance with entire (orig.) features or without a single feature

Excluded feature

DC DSR DD SD ED AC

Excluded
Feature

DC .5817 .8751 .8917 .8495 .8333
DSR -36.1% .8521 .8985 .8560 .8902

DD -3.89% -6.42% .8925 .8790 .8721
SD -2.08% -1.33% -1.99% .8750 .9041
ED -6.71% -6.00% -3.47% -3.91% .8888
AC -8.49% -2.24% -4.23% -0.71% -2.40%

(b) Model performance without a pair of features (in corresponding row and column)

Table 2: The result of an ablation study (Sect. 5.1) analyzing the per-
formance of a regression module estimating human-judged separability
scores. We seek how the performance of the module varies as we re-
move a single (a) or a pair (b) of features, reporting the R2 score (first
row in (a), upper right half in (b)), and the change rate compared to the
model using entire features (second row in (a), lower left half in (b)).

5.1 Ablation Study for the Regression Module
We report the results of the ablation study examining (1) the perfor-
mance of our regression module (Sect. 4) and (2) the significance of
the features we designed (Table 1; Sect. 4.2).

5.1.1 Study Design
Objectives and Design: The study aimed to achieve two objectives:
(1) to investigate the accuracy of our regression module in estimating
human-judged separability and (2) to analyze how much each feature
contributed to the model performance (i.e., the significance of features).
For the first objective, we evaluated the performance of our model as
it is (i.e., used all features we discovered). To accomplish the second
objective, we switched off each feature individually and examined the
extent to which the performance deteriorated. Additionally, to take
into account the interplay between features, we repeated the process by
disabling feature pairs.
Measurement: We conducted a five-fold cross-validation to exam-
ine the performance of the model while using X and S as input and
target, respectively. We used R2 for the performance metric as it is
interpretable [13] and, moreover, unbiased if the number of points is
fixed (as in our case).

5.1.2 Results and Discussions
Model Performance: As in Table 2 (a), the model achieved R2 score
over 0.9 with all features (which we mark as orig.). This result validates



Cl
ea
r

Am
bi
go
us

Fig. 3: The top eight clear scatterplots (low cluster ambiguity; first row) and the top eight ambiguous scatterplots (high cluster ambiguity; second row)
based on CLAMS score, which are picked within 60 scatterplots we used in the accuracy evaluation (Sect. 5.2).

the effectiveness of the features and also the reliability of our study-
driven approach to designing features.
Significance of the Features: According to Table 2 (a), DSR caused
the biggest degradation of the performance when removed. ED was
next, and SD was third. Meanwhile, removing DC, DD, and AC made
only a subtle decrement (< 1%) in the performance or even made
it better, indicating that these three features barely explained visual
clustering alone. However, we cannot conclude that the bottom-three
features (DC, DD, AC) have less significance than the top-three features
(DSR, ED, SD) due to the existence of interplay between features (see
Table 2 (b)). For example, degradation resulting from switching off AC
and DC together was substantially higher than the sum of degradation
caused by switching off the features individually and was also higher
than the largest degradation possible by removing a single feature
(DSR). The same phenomenon occurs for ED and DC or DC and DSR.
The interplay between DC and DSR was especially large compared to
other combinations, validating the influence of the proximity factor in
visual clustering. The significance of feature pairs suggests that future
studies on visual clustering factors should focus on examining feature
interplay in detail rather than analyzing features individually.

5.2 Accuracy Evaluation of CLAMS
We evaluated the accuracy of CLAMS by (1) constructing the ground
truth cluster ambiguity ranking of scatterplots and (2) checking how
well the ranking made by our measure matched the ground truth. The
ground truth ambiguity of scatterplots was estimated based on a user
study with 18 participants. Our results showed that CLAMS precisely
estimated ground truth cluster ambiguity, outperforming the tested alter-
natives (e.g., human annotations, variability of clustering techniques).

5.2.1 User Study for Constructing Ground Truth Ambiguity
Objectives and Tasks: Our user study aimed to construct the ground
truth cluster ambiguity of scatterplots. We formulated two experimental
tasks relevant to our research questions.

(T1) Lasso the clusters in the given scatterplot using the mouse.
(T2) Subjectively determine the ambiguity of the scatterplot.

T1 aims to directly collect the visual clustering results of participants so
that we could compute ground truth cluster ambiguity. We additionally
asked participants to conduct T2 to check how well the subjective
ambiguity annotated by individuals matches the ground truth ambiguity
compared to CLAMS.
Procedure: The entire study consisted of three phases. We first col-
lected the participants’ non-identifying demographics. We then asked
the participants to conduct the two tasks listed above, viewing 60 se-
lected stimuli (i.e., scatterplots) in random order. Finally, participants
answered the post-study interview questions: (1) “Which characteris-
tics of the scatterplots do you think are most important in determining
separation?” (2) “What makes scatterplots ambiguous or clear based
upon your response on the shown scatterplots?”
Datasets and Preprocessing: Our primary consideration in generating
scatterplot stimuli was maximizing the diversity of cluster patterns
(related to C2 in Sect. 3.1). For this purpose, we first generated a

large number of scatterplots with a high diversity of patterns. This
was done by applying eight dimensionality reduction (DR) techniques
(t-SNE [74], UMAP [46], Densmap [49], Isomap [73], LLE [61],
MDS [35], PCA [52], and Random Projection) to 96 high-dimensional
datasets [31]. Except for PCA and MDS, we generated 20 scatterplots
while randomly adjusting the hyperparameters to further diversify the
patterns. We obtained (20 · 6 + 2) · 96 = 11, 712 scatterplots in total.

We consecutively applied a stratified sampling, following Pandey
et al. [1] and Abbas et al. [2], to remove scatterplots with similar
patterns [2]. To do so, we first grouped candidate scatterplots based
on their number of clusters. We set the number as the optimal num-
ber of Gaussian components computed by GMM. We then computed
Scagnostics [15] of scatterplots, representing each scatterplot as a vec-
tor consisting of Scagnostics scores (i.e., a vector abstracting the pattern
of a scatterplot). Finally, we applied K-Means [38] to vectors repre-
senting each group of scatterplots and sampled scatterplots that were
closest to centroids of resulting clusters. We set K as 12. If the number
of scatterplots in a group was less than 12, we sampled all scatterplots
from the group. K value is set to limit the number of sampled scat-
terplots to be around 100, making it possible to manually investigate
each by eye. 114 scatterplots were sampled. We manually sampled
these scatterplots to minimize similar patterns, resulting in the final 60
scatterplots.
Participants: CLAMS is designed for use in data analytics. We, thus,
required participants to have experience in data analysis using scatter-
plots to ensure that they understood the concept of visual clustering.
Based on snowball sampling [24], we recruited 18 participants from
the data visualization, human-computer interaction, and data mining
communities (13 males and five females, aged 23-33 [27.2 ± 2.7]).
While 15 participants were graduate students, the remaining three were
working professionals. Two participants self-reported as novice data
analysts, two as intermediate, and 15 as experts. For familiarity with
data analysis with scatterplots, 14 participants reported that they were at
the expert level, and two participants said they were at an intermediate
level. The remaining two participants reported themselves as novices.
We compensated each participant with the equivalent of $20 for their
time.
Apparatus: The experiment was conducted over a recorded Zoom
session. We developed a website for the study participants. Participants
were asked to access the website and share their screens so that the
instructor could monitor and guide the experiment. As with the factor
exploration study (Sect. 4.1), we fixed the stimuli size to 700px ×
700px and constrained participants to use a laptop or desktop monitor.
The studies were 45-60 minutes long. We instructed the participants on
tutorials and experimental tasks, and conducted interviews at the end.

5.2.2 Extracting Ground Truth Cluster Ambiguity

We extracted ground truth cluster ambiguity for the sampled scatter-
plots by measuring the extent to which visual clustering results (i.e.,
lassoing result) differed by participant. To compute the difference, we
used external clustering validation measures (EVMs) [80], following
previous research on visual clustering [17, 30]. As EVMs can be ap-
plied only to a pair of clusters, we computed EVM scores of visual
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Fig. 4: The comparison of the performance of CLAMS and human annotators (i.e., participants in our user study; Sect. 5.2.1) in estimating ground
truth cluster ambiguity ranking. Each bar represents the rank correlation between the cluster ambiguity ranking made by the subjective response of a
single participant and the ground truth ambiguity ranking. The orange and blue colors denote the participants who showed less and more accurate
performance compared to CLAMS (red dashed line), respectively. The purple dotted line depicts the average performance (i.e., rank correlation with
ground truth ambiguity) of participants. We found that CLAMS’s performance is better than the average performance of participants but fails to
outperform the performance made by the best annotator.
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Fig. 5: The rank correlation between ground truth ambiguity extracted
based on five EVMs (Sect. 5.2.2) and the rankings made by computa-
tional ways to measure cluster ambiguity (CLAMS, variability of clustering
techniques). Overall, CLAMS outperformed the competitors regardless
of the used EVM, objectively having a strong correlation (ρ > 0.6) with
ground truth [55] for the majority of the cases.
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Fig. 6: We identified the factors that participants considered when lasso-
ing clusters and rating the scatterplot on a scale of very ambiguous to
very clear in our main study (Sect. 5.2). The length of the filled bars and
white bars depicts the ratio of the participants who denote that the corre-
sponding factor affects cluster separability and ambiguity, respectively.
As the past studies [62, 68] have demonstrated, we observed density,
proximity, and shape as main factors.

clustering results for each cluster pair and averaged the scores to get
the final ground truth ambiguity. For EVMs, we used adjusted mutual
information (ami) [76], adjusted rand index (arand) [72], v-measure
(vm) [59], homogeneity (homo) [59], and completeness (comp) [59]. We
chose these measures as they are widely adopted in clustering and data
mining communities [31,58]. As a result, we obtained five ground truth
cluster ambiguity rankings of scatterplots, where each corresponds to
an individual EVM. We only used EVMs that are “adjusted” so that the
scores can be compared across different datasets [80].

5.2.3 Results and Discussions

Performance Analysis: The results validate the CLAMS’s preciseness
in estimating cluster ambiguity. As seen in Fig. 5, the rankings made by
CLAMS generally showed a strong correlation with the ground truth

ranking (ρ > 0.6) based on a criterion of Prion and Haerling [55]. The
correlation was, however, low for arand. This is because, unlike other
EVMs that interpret clustering assignments as a probabilistic event,
arand discretely “counts” the disagreement of clustering results and
thus generates results that do not align with our probabilistic approach.
CLAMS also substantially outperformed clustering techniques in terms
of predicting ground truth for all EVMs, verifying that CLAMS is the
best of the tested computational options.

As depicted in Fig. 4, CLAMS showed better performance in esti-
mating ground truth cluster ambiguity compared to the average human
annotators. Except for the case of arand, CLAMS always showed a
better correlation with ground truth (red dashed line) compared to the
average correlation of human annotators (purple dotted line) regardless
of the EVM choice. On average, 9.8 out of 18 participants (54%; the
proportion of orange bars) made less accurate predictions compared to
CLAMS. This result indicates that it is difficult to estimate ambiguity
for the judgment of a single person. Therefore, our automatic solution
offers increased value in accurately evaluating ambiguity.
Post-Study Interview: As described in Sect. 5.2.1, we interviewed
participants to identify the reasoning behind their responses. We found
that the main factors behind the lassoing (i.e., visual clustering) and
determining the scatterplot ambiguity levels were density, proximity,
shape, and distribution (as shown in Fig. 6). We elaborate on these
findings in detail in Sect. 7.

6 APPLICATIONS

We introduce two applications of CLAMS that validate the effec-
tiveness, generalizability, and applicability of CLAMS. We present
that CLAMS can further optimize nonlinear dimensionality reduction
embeddings to reduce cluster ambiguity while maintaining accuracy
(Sect. 6.1). We then demonstrate that the measure can be used to find
reliable datasets for benchmarking clustering techniques (Sect. 6.2).

6.1 Reducing Cluster Ambiguity of Nonlinear Dimensional-
ity Reduction Embeddings

6.1.1 Problem Statement and System Design

A common way to analyze the cluster structure of high-dimensional
data is to use dimensionality reduction (DR) [50] techniques, e.g.,
t-SNE [74], Isomap [73], or UMAP [46], which synthesizes 2D repre-
sentation (i.e., embedding) that preserves the original characteristics of
the input high-dimensional data. The analysis is usually done by de-
picting the embedding as a scatterplot and conducting visual clustering.
Recently, nonlinear DR techniques [37] that can reveal the complex
data manifold have been widely developed [22, 33, 46, 74] and used for
cluster analysis [8, 23].

Embedding varies by choice of DR technique or hyperparameter,
where each can lead to significantly different analysis results. A typical
way to address this problem is to optimize embeddings by assessing
their accuracy in representing the original data. Diverse metrics to mea-
sure the accuracy of DR embeddings [32, 37, 50] have been developed
for the purpose. However, an optimized embedding can still have an
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Fig. 7: Dimensionality reduction embeddings optimized solely based
on the accuracy (top row; intermediate results of AmbReducer) and
those optimized considering both accuracy and cluster ambiguity (bottom
row; final results of AmbReducer). Our experiment shows that the
accuracy of the final results has no significant difference compared
to the intermediate results in terms of accuracy but has a substantially
smaller amount of cluster ambiguity (Sect. 6.1.2, Fig. 8).
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Fig. 8: The results of our evaluation on AmbReducer (Sect. 6.1.2). We
compared the accuracy and cluster ambiguity of the intermediate (op-
timized solely on accuracy; blue) and final (optimized based on both
accuracy and cluster ambiguity; orange) embeddings made by AmbRe-
ducer. We found that there is no significant difference (ns) between the
final and intermediate results in terms of accuracy (top), while the cluster
ambiguity is significantly reduced (p < .05) in the final results (bottom).

ambiguous cluster structure, which can potentially harm the reliability
of the analysis despite high accuracy (Sect. 1). For the valid analysis of
high-dimensional data, an embedding having both high accuracy and
low cluster ambiguity is required.

Here, we introduce an optimization system that can discover DR
embeddings satisfying both high accuracy and low ambiguity, which
we call AmbReducer. Given the input high-dimensional data Z, DR
technique t, and DR accuracy metric m, AmbReducer first finds the
intermediate embedding that maximizes accuracy. This is done by
searching a hyperparameter setting h1 = argmaxh∈H m(t(Z, h)),
where H denotes the set of every possible hyperparameter setting and
t(Z, h) represents the embedding made with t using hyperparameter
setting h. We use Bayesian optimization [71] over H while maximizing
m(t(Z, h)). Then, the system searches for the final embedding that
maintains accuracy while reducing cluster ambiguity compared to the
intermediate embedding. Formally, this is done by finding hyperparam-
eter setting h2 = argmaxh∈H loss(h, h1), where loss is defined as

loss(h, h1) =

{
CA(t(X,h)) if | m(t(Z, h1))−m(t(Z, h)) |< τ

∞ if | m(t(Z, h1))−m(t(Z, h)) |> τ
.

Here, CA denotes CLAMS score, and τ denotes the threshold pa-
rameter, which can be set by users. τ adjusts the tradeoff between
accuracy and cluster ambiguity. If we set small τ , the final embedding
made by h2 tends to have high accuracy but has fewer chances to
reduce ambiguity. The proper value of τ highly depends on the target
application and domain. For example, the more analysts involved,
the greater τ should be to give more room to reduce ambiguity.
Automatically determining τ is important future work that extends the
applicability of AmbReducer.

6.1.2 Evaluation
Objectives and Design: We wanted to verify the effectiveness of Am-
bReducer. We hypothesized that AmbReducer substantially reduces
cluster ambiguity while maintaining accuracy. To validate the hypoth-
esis, we prepared 30 high-dimensional datasets, sampled from the
datasets we used in our main study Sect. 5.2, and applied AmbReducer.
We collected the intermediate (based on h1) and final (based on h2) em-
beddings, and checked how the accuracy and cluster ambiguity varied
between the two groups. Fig. 7 depicts the subset of two groups.
Hyperparameter Setting: Our hyperparameter setting was as follows.
For the DR technique, we used UMAP, as UMAP is widely used for
cluster analysis in practice [8, 63]. We used Steadiness & Cohesive-
ness [32] (S&C) as accuracy measures, as they are specially developed
to measure the accuracy in preserving cluster structure. We used the
F1 score of S&C to represent the accuracy of DR, which ranges from
0 to 1. Finally, we arbitrarily set τ as 0.05.
Results and Discussions: We used a t-test to check whether there is
a significant accuracy (measured by S&C) or cluster ambiguity (mea-
sured by CLAMS) difference between the final and intermediate em-
beddings. Although there was no significant difference in terms of
accuracy (t(58) = .455, p = .650), we found that the cluster ambigu-
ity of the final embeddings was significantly lower than the one of the
intermediates (t(58) = 2.55, p < .05). The result verifies our hypoth-
esis, verifying the effectiveness of AmbReducer and the applicability
of CLAMS.

6.2 Finding Reliable Datasets for Clustering Benchmark
We demonstrate an experiment validating CLAMS’s effectiveness in
selecting reliable datasets for benchmarking clustering techniques [40].
We hypothesized that if the cluster ambiguity of a dataset (a scatter-
plot in this case) is high, then the clustering benchmark using the
dataset is unreliable. Our assumption is that if the dataset is ambiguous,
which means that there is no explicit cluster structure to be found, the
performance of clustering techniques to “find the cluster” will be insuf-
ficiently compared. Thus, clustering benchmarking with the ambiguous
dataset will likely provide an arbitrary ranking of techniques, which
harms the credibility of the evaluation. To verify the hypothesis, we
prepared three sets of datasets having different cluster ambiguity levels
and checked the stability of the rankings made by different datasets in
each set. The detailed explanation of the experiment is as follows:
Objectives and Design: We wanted to check whether the cluster
ambiguity of benchmark datasets affects the stability of the ranking
of clustering techniques, which we use as a proxy for the reliability
of the evaluation. We prepared three sets of datasets with the same
cardinality: Ph, Pm, and Pl, with each having high, middle, and low
cluster ambiguity, respectively. For each set, we obtained rankings of
clustering techniques, where each was made based on an individual
dataset. We then checked how the rankings correlate with each other
by averaging the pairwise rank correlation computed by Spearman’s ρ.
Datasets: We used 60 scatterplots we gathered in the main evalua-
tion for CLAMS (see Sect. 5.2). We sorted the scatterplots based on
CLAMS score in descending order, and then assigned top-20, middle-
20, and bottom-20 scatterplots to Ph, Pm, and Pl, respectively.
Clustering Techniques: We used eight techniques: HDBSCAN [14],
DBSCAN, K-Means, X-Means [53], Birch [85], and Agglomerative
clustering [48] with single, average, and complete linkage.
Measurements: We used the Silhouette coefficient [60] and Calinski-
Harabasz index [12] to measure the performance of clustering tech-
niques. To ensure that the evaluation reflected the maximum capability
of clustering techniques, we ran Bayesian optimization and used the
best score obtained while following the hyperparameter range setting
of Jeon et al. [31]. Refer to Appendix C for detailed settings.
Results and Discussions: Fig. 9 depicts the results. We used a one-way
ANOVA to analyze how the rank correlation scores vary due to the
used set of datasets (Pl, Pm, Ph). We used Tukey’s HSD for post
hoc analysis. For both the clustering metrics, the set of datasets had a
significant effect (Silhouette: F (3, 567) = 54.1, p < .001; Calinski-
Harabasz: F (3, 567) = 44.0, p < .001). Post-hoc analysis revealed
that the rank correlation scores over Pl and Pm were significantly
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Fig. 9: Results of the experiment demonstrating CLAMS’s effectiveness in picking reliable clustering benchmark datasets (Sect. 6.2). We first
prepared a set of datasets (bottom-20 (Pl; blue), middle-20 (Pm; orange) or top-20 (Ph; green) subset of 60 scatterplots we used in the main study
based on CLAMS score) and clustering metrics (Silhouette Coefficient (a) or Calinski-Harabasz Index (b)). For each set, we compute the rankings of
clustering techniques over individual datasets within the set based on clustering metrics. We then compute the within-set stability by assessing rank
correlations of the rankings pairwisely. In general, the set consisting of datasets with less ambiguity showed better stability, confirming the hypothesis
that datasets with less cluster ambiguity are more reliable for benchmarking clustering techniques.

higher than the ones over Ph for both metrics (p < .001 for every
case). Meanwhile, scores over Pl were significantly higher than the
ones over Pm for the Silhouette coefficient (p < .001), but not for the
Calinski-Harabasz index (p = 0.301). Such results indicate that using
datasets with less cluster ambiguity makes the clustering evaluation
more stable, confirming our hypothesis and validating the effectiveness
of CLAMS in picking reliable datasets for the clustering benchmarks.

7 DISCUSSION

Our approach presents a system to identify and assess the ambiguity of
cluster structure in scatterplots. We provided preliminary steps toward
a comprehensive automation system to simulate human judgments in
scatterplots. In this section, we discuss the implications of our measure
design and experiments including opportunities for future work.

7.1 Proxy for Human Perception
In this work, we provided preliminary steps toward developing the
model to identify and rank intrinsic variability in visual perception.
Evaluating variability based on human participation is not always feasi-
ble, scalable, or robust considering the diversity of data characteristics,
visualization designs, and other factors that might influence people’s
perceptions. There are simply too many sources of variance to account
for. CLAMS, which automatically generates a score simulating hu-
man judgments, offers a scalable and robust alternative to an approach
that attempts to account for every possible source of variance. Our
work demonstrates the promise of using statistical modeling to infer
patterns over a corpus of human estimates. Extending our approach to
other perceptual tasks (e.g., outlier detection) would bring the notion of
perceptual variability to more complex and practical applications [47].

Toward this end, we provide a demo interface that measures and
explains cluster ambiguity. We believe that the interface will enhance
the usability of CLAMS and moreover serve as a preliminary step
toward future applications considering perceptual variability.

7.2 Credibility of the User Study-Based Design Process
While designing CLAMS, we identified several factors that play a vital
role in cluster perception through a user study (Sect. 4.1), and built a
regression module estimating human cluster perception based on study
findings (Table 1). These factors support building a robust module
that accurately reflects how people identify clusters in data analysis
(Sect. 4). Our ablation study (Sect. 5.1) verifies the importance of these
factors, validating the credibility of using human strategies to inform
model parameters. Moreover, the main study (Sect. 5.2) showed that
the measure built upon such a design process reliably estimates the
ambiguity of scatterplots with a wide range of cluster patterns.

Our study asked participants about how the characteristics of datasets
influence the ambiguity of a scatterplot (see Sect. 5.2). The findings
from the interview validate the reliability of our design process. As
shown in Fig. 6, participants identified the factors that we have consid-
ered in our model (see Table 1), such as density, proximity, shape, and
how clusters are located and related to each other (i.e., distribution).
Note that such results also match well with prior findings [57, 62, 67].

7.3 Ambiguity of Ambiguity
While our interview revealed common factors that influence cluster
perception (Sect. 7.2), it also showed that the perceived influence of dif-

ferent factors on ambiguity varies among participants. In other words,
the definition of cluster ambiguity is ambiguous to each participant.
This observation depends on what factors are given more importance by
different participants when determining a scatterplot’s ambiguity. For
example, P01 said, "I find the shape of the group of points to be the main
reason in identifying and separating clustering. If they have salient
separable shapes, they are more clear", and P07 noted, "Proximity
and concentration of the points help me separate the clusters quickly".
Fig. 6 also supports this finding, showing that no single factor received
complete agreement from the participants (see the white transparent
bars). Considering the variability across participants, we conclude that
ambiguity cannot be determined by a single person but must instead
reflect a population of individuals. The fact that the performance of
human annotators (i.e., participants) in predicting ground truth ambi-
guity varied in our main study (Sect. 5.2) supports this claim. This
observation indicates that, inevitably, multiple subjects are required for
assessing ambiguity through human resources, thereby underscoring
the importance of our automated solution.

7.4 Limitations and Future Work
CLAMS outperformed computational approaches and more than 50%
of participants (Sect. 5.2) in precisely estimating cluster ambiguity.
However, there are several opportunities to improve CLAMS. For
example, we found that CLAMS erroneously considers scatterplots
with more numbers to have less ambiguity, as seen in Fig. 3—the
top eight clear scatterplots (top row) generally have more clusters
than the top eight ambiguous ones (bottom row). We quantitatively
demonstrate this bias in Appendix D. We can also improve the method
of aggregating pairwise ambiguity scores, which is currently a naïve
average. Considering cluster topology or their pairwise distances during
the aggregation may better reflect human visual perception.

Another open direction is to generalize CLAMS. We can extend
CLAMS to consider visual encoding (e.g., size, shape, and color of
marks) of scatterplots by revising the features feed into our regression
module. We may also improve our measure to deal with nested clusters
by adopting hierarchical clustering algorithms [48] in place of GMM.
We are also interested in broadening the concept of ambiguity to
encompass general visualization. For example, we can model the
perceptual variability that may arise when examining cluster structures
of high-dimensional data via scatterplot matrices or parallel coordinates.
Moreover, we aim to develop a model estimating ambiguity in various
perceptual tasks, including outlier detection and trend analysis.

8 CONCLUSION

We introduce CLAMS, a VQM for estimating the cluster ambiguity of
a monochrome scatterplot, which originally required expensive human
resources to compute. To serve as a proxy for human perception across
a wide range of cluster patterns, our measure is designed based on a
qualitative user study and is trained over perceptual data. Through quan-
titative evaluations, we verified that CLAMS outperforms automatic
competitors while showing competitive performance with human anno-
tators. Our research findings not only demonstrate current applications
but also invite discourse on potential future applications that capitalize
on the concept of ambiguity. In summary, our work represents a signifi-
cant advancement toward developing a comprehensive framework that
elucidates the phenomenon of ambiguity in visualization.

http://www.clusterambiguity.dev.s3-website.ap-northeast-2.amazonaws.com/
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