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Abstract—We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model

which characteristics of routes, such as distance and the number of traffic lights, affect travelers’ route choice behaviors and how much

they affect the choice during their trips. Through close collaboration with domain experts, we designed a visual analytics framework for

Route Choice Modeling. The framework supports three interactive analysis stages: exploration, modeling, and reasoning. In the

exploration stage, we help analysts interactively explore trip data from multiple origin-destination (OD) pairs and choose a subset of

data they want to focus on. To this end, we provide coordinated multiple OD views with different foci that allow analysts to inspect, rank,

and compare OD pairs in terms of their multidimensional attributes. In the modeling stage, we integrate a k-medoids clustering method

and a path-size logit model into our system to enable analysts to model route choice behaviors from trips with support for feature

selection, hyperparameter tuning, and model comparison. Finally, in the reasoning stage, we help analysts rationalize and refine the

model by selectively inspecting the trips that strongly support the modeling result. For evaluation, we conducted a case study and

interviews with domain experts. The domain experts discovered unexpected insights from numerous modeling results, allowing them to

explore the hyperparameter space more effectively to gain better results. In addition, they gained OD- and road-level insights into which

data mainly supported the modeling result, enabling further discussion of the model.

Index Terms—Route choice modeling, urban planning, trajectory data, origin-destination, visual analytics

Ç

1 INTRODUCTION

IN transportation engineering, Route Choice Modeling
(RCM) is an analysis method used to understand trav-

elers’ perceptions of road characteristics and to predict traf-
fic conditions on routes with given characteristics [1]. By
developing a quantitative model based on travelers’ route
choice behaviors, researchers can gain insights into how
and why people take a specific route. RCM decides which
road characteristics should be given higher priority for road
network design projects; for example, if it is found that bicy-
cle riders prefer a route with a gentle slope to a short route,

civil engineers can use this finding in designing bicycle
lanes. Furthermore, RCM analysis also allows researchers to
quantitatively evaluate the effectiveness of the bike lane
pavement in advance.

However, we found that RCM researchers resort to an
ad hoc or improvised solution to conduct route choice
modeling by combining general-purpose systems; for
example, they first obtain an overview of route choice
behaviors using general geographic information systems
(GIS), such as ArcGIS [2] and QGIS [3], and then use
Python or R scripts to clean the data and build a model.
However, such an ad hoc combination of multiple general-
purpose tools does not support RCM analysis effectively,
especially when researchers form hypotheses to test in an
early stage of analysis. In such analysis, they need to
repeatedly select a subset of data with a certain filtering
condition (e.g., temporal or spatial) and slightly edit the
scripts to find meaningful patterns, which requires tremen-
dous time and effort.

To resolve these issues, we present RCMVis, an interac-
tive visual analytics system to streamline RCM analysis with
a three-stage analysis framework. To identify the challenges
researchers confront every day and inform the design pro-
cess, we collaborated with three domain experts in the urban
planning field for six months: one postdoctoral researcher
(P1) and two graduate researchers (P2 and P3). After domain
situation analysis and task abstraction, we suggest an inter-
active analysis pipeline consisting of three stages: explora-
tion, modeling, and reasoning. In the exploration stage, we
enable users to explore and filter movement data to decide
targets for RCM. Then, in the modeling stage, users conduct
modeling on the targets with multiple hyperparameter sets
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and identify patterns by comparing them. In the reasoning
stage, users perform a data-level analysis of the selected
model by exploring movement records that explain the
modeling result well. To this end, we design novel visualiza-
tions and interactions to effectively support each stage and
streamline the whole analysis process. We evaluate RCMVis
through a case study with two domain experts using a large
bicycle travel dataset from a public bicycle-sharing system of
the SeoulMetropolitan Region.

The contributions of this paper are:

1) Design and development of RCMVis, a visual analyt-
ics system with a three-stage interactive modeling
framework for effective route choice modeling,

2) Identification and abstraction of the domain situa-
tion of route choice modeling analysis, and

3) Evaluation of RCMVis through a case study of a real-
world bicycle travel dataset.

2 RELATED WORK

2.1 Route Choice Modeling

RCM aims to explain and predict a route choice probability
among a choice set with two or more routes. For example,
RCM is appropriate for answering the following question:
when driving from LA to Seattle, which route is preferred and
why? A literature survey of RCM [1] divides it into two
parts: choice set generation and model estimation.

Choice set generation is a step for generating a discrete
choice set for decision-makers. For example, what are the
routes, and how many are there from LA to Seattle? Traditional
approaches derive a choice set based on a road network
structure. These include k-shortest paths [4], labeling
approach [5], link elimination [4]. Since these methods
solely consider properties of road networks, false positive
(e.g., generating a non-realistic route) or false negative
(e.g., omitting a probable route) errors may be likely to
occur [6].

As a remedy to these limitations, recent studies adopt a
data-driven method using observed routes when generating
a choice set [6], [7]. The advance of global positioning system
(GPS) technology made it easy to collect actual traveling
routes of individuals and opened an opportunity to utilize
these revealed preference (RP) for choice set generation. In
RCMVis, we adopt on RP-based k-medoids clustering
method, which is actively studied by our collaborators, to
generate k alternative routes from observed routes. With our
visual analytics approach, we explored various characteris-
tics of the generation techniques based on the k-medoids
method.

In discrete choice modeling, a general framework to
which RCM belongs, logit-based models such as multino-
mial logit (MNL) or nested logit (NL) are commonly adopted
when estimating the model parameters. However, when it
comes to RCM, both MNL and NL are not appropriate
because of the model’s independence of irrelevant alterna-
tives (IIA) property [8]. In other words, MNL andNL require
that candidate items should not be correlated with each
other. However, in most cases, routes on a road network
may overlap with each other to some extent. In this specific
context, path-size logit (PSL) [8] is widely used to deal with

the similarities between candidate routes using a term called
path size. In that sense, we adopt PSL for estimating amodel.

There are well-known tools that can perform route choice
modeling. NLOGIT [9] is a commercial software program
for choice modeling, which supports a GUI interface and
can conduct an analysis with multiple OD pairs. Although
NLOGIT widely supports a variety of choice models and
their variations, it only provides basic charts for showing
the modeling results and does not support map-based visu-
alization; hence, users cannot explore spatial distributions
of travel data. The transport planning software called
Emme [10] visualizes a spatial overview of travel data with
map interfaces and provides a choice modeling component.
However, Emme does not provide a means to comprehend
the modeling result other than showing the statistics of the
model; thus, users might find it challenging to gain deeper
insight into the modeling result.

2.2 Trajectory Visual Analytics for Urban Planning

A trajectory is a common form of movement description
consisting of location coordinate information recorded at a
specific time interval [11]. There are already many existing
studies analyzing trajectory data with visual analytics, and
researchers can get a sense of the research history and
future directions through survey papers [11], [12], [13], [14],
[15], [16].

There have been many attempts to solve urban traffic
problems, such as traffic surveillance [17], [18], [19], micro-
scopic pattern discovery [20], [21], [22], [23], optimal pattern
finding [24], [25], accessibility modeling [26], [27] and route
choice behaviormodeling [28]with a trajectory visual analyt-
ics. Lee et al. [19] visualize traffic congestion with a novel
visualization called Volume-Speed Rivers, with congestion
forecasting results from the Long Short-Term Memory
(LSTM)model. Wang et al. [18] utilize taxi GPS trajectories to
show traffic jam conditions over time and propagation
graphs to understand how traffic jams are propagated in a
road network. T-Watcher [17] provides visualizations of tra-
jectories at three different levels, including a region, a road,
and individual vehicles, to effectively monitor traffic condi-
tions. Like traffic congestion analysis, our route choicemodel
can predict an amount of traffic for given OD pairs and
routes. However, RCM differs in that it determines the prob-
ability that travelers will choose a specific route under the
clear condition that an origin, destination, and route choice
set are defined. Therefore, RCM mainly focuses on under-
standing a traveler’s perception of route characteristics
rather than conducting macro-level traffic analysis across
road networks.

For microscopic pattern discovery, TripVista [20] focuses
on the traffic pattern of a single road intersection. They pro-
vide ring-style sliders to select data and show a ThemeRiver-
style [29] visualization to help users explore microscopic
movements of vehicles. Liu et al. [21] facilitate the exploration
of route diversity between origin and destination in terms of
the spatial and temporal information of routes. Zeng et al. [22]
suggest an interchange circos diagram to visualize traffic pat-
terns on each junction of a road network. Wang et al. [23] pro-
vide a sketch-based interface to support road-level trajectory
querying with multiple coordinated views to understand
multiple aspects of traffic. Like the aforementioned works,
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RCMVis enables conducting a street-level analysis by spa-
tially filtering overall travel data into small regional data to
figure out route choice behaviors within a small, specific
region.

A study of visual analytics for RCM was reported by Lu
et al. [28], and they support a visual analytics pipeline for
route choice modeling with trajectory filtering. However,
they assumed that only a single OD pair could be of interest
at once. In practice, regional movement data often comprise
multiple OD pairs, and RCM researchers have to consider
all of them to model the route choice behavior of the area.
Further, researchers make many attempts to find models
that better explain the route choice behavior using a variety
of algorithms or tuning hyperparameters. After finding the
best-fit modeling result, researchers seek to determine the
result’s implications at the data level by identifying which
movements primarily support this result. By reflecting on
the aforementioned analysis scenarios, we present a novel
three-stage analysis framework to support more realistic
analytic tasks than existing RCM tools.

3 BACKGROUND

During our design study process, we had weekly meetings
with three domain experts for six months. Through this
tight collaboration with them, we were able to gain a deep
understanding of the domain situation and RCM analysis in
general. We identified their existing analysis procedures
and challenges in processing the data with their tools and
interpreting and reasoning the modeling results. This sec-
tion elaborates on the background of our work in terms of
the domain situation, data abstraction, and task abstraction,
in accordance with the visualization design framework pre-
sented by Brehmer and Munzner [30], [31].

3.1 Domain Situation Analysis

We recognized that the analysis process of the experts could
be divided into three conceptual stages. Although the
experts did not explicitlymention this division, they strongly
agreed with it when we introduced our three-stage frame-
work. We summarize the domain situation using an illustra-
tive example where Jenny, an urban planning researcher,
performs route choice modeling. The goal of Jenny’s analysis
is to identify which factors are primarily considered by bicy-
cle riders when choosing their travel route, which is a com-
mon analysis scenario for RCM analysts.

Exploration Stage. She loads the data to visualize it on a
map through a GIS. She first explores the geographical dis-
tribution of bicycle traffic and discovers some prominent
areas with heavy traffic. Then, she wonders what these pat-
terns will be like during the peak hour. However, since the
GIS does not support interactive filtering, she runs R scripts
to keep only the travels of her interest in the data and loads
the filtered data again to visually inspect patterns.

Modeling Stage. After exploring the characteristics of the
data, Jenny decides to conduct RCM with this data to deter-
mine riders’ route choice behaviors during the peak hour.
She tunes a set of hyperparameters of the algorithms for
choice set generation and model estimation, which are the
two key parts of route choice modeling. Since the quality of
a model is greatly affected by its hyperparameters, she

experiments with various sets of hyperparameters and
inspects the results to compare them. She eventually finds a
set of hyperparameters that results in a high goodness of fit.

Reasoning Stage. She decides to interpret the model esti-
mated using the aforementioned set of hyperparameters.
To understand the route choice behavior of bicycle riders,
she inspects the statistical significance of each route attri-
bute in the model. A positive coefficient for an attribute
(e.g., distance) means that the routes with higher values
on that attribute are more preferred by the riders. She com-
bines the modeling result (i.e., significance), her domain
knowledge, and geographical information to gain higher-
level knowledge.

Limitations of the Previous Approaches. The foremost limita-
tion in Jenny’s data exploration with existing tools is that the
entire exploratory analysis was fragmented, so she needed
to go back and forth between the GIS and data manipulation
scripts. Furthermore, although it was necessary to explore a
hyperparameter space to obtain a good model in the model-
ing stage, this task was tedious and inefficient, as it was done
manually without the support of interactive interfaces.
Finally, in the reasoning stage, she needed to combine the
findings from various sources to elicit knowledge, but this
task would be cognitively overwhelming if done without the
aid of external representations.

3.2 Data Preprocessing and Abstraction

We used a real-world bicycle trip dataset from the Seoul
bike-sharing system [33]. The dataset included information
on 210 K trips that took place in March 2018. Each trip con-
sisted of GPS-tracked path records (recorded every minute),
origin and destination stations, rental and return times,
travel distance, and duration.

3.2.1 Terminology

For a clear understanding of RCM analysis, we define
important terms as follows:

� Station: A physical facility where riders can rent or
return a bicycle.

� Route: A path between an origin station and and a
destination station (OD) pair. There can be multiple
routes between the same OD pair.

� Trip: A movement record of an individual rider. It
consists of an OD pair and a route taken.

� Trip Set: A set of trips. Multiple riders can move
between the different origins and destinations, and
their trips constitute a trip set.

� Station Attributes: The attributes that a single station
can have. All the station attributes are listed in Table 1.

� OD Attributes: The attributes that a single OD pair
can have. All the OD attributes are listed in Table 2.

� Route Attributes: The attributes that a single route can
have. All the route attributes are listed in Table 3.

� Model Instance: A result of modeling the trip set. It
mainly refers to model statistics and estimated coef-
ficients of the route attributes. Detailed information
about the modeling process and its result is provided
in Section 4.
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3.2.2 Data Cleaning

We found that the raw data had erroneous records, such as
trips with missing fields. To clean the data, we referred to
Wang et al. [18] and modified their cleaning criteria. We fil-
tered out the trips that met one of the following conditions:

� Missing Fields: Trips with a missing field.
� Out of Bounds: Trips that contain GPS records outside

the boundaries of Seoul [127.1861E, 126.7686E] x
[37.4213N, 37.6929N].

� Same O/D: Trips whose origin and destination are the
same, not being of interest in RCM analysis.

� High Speed: Trips that have GPS records of riding far-
ther than 0.5 km in a minute.

� Long Distance from Origin: Trips whose distance
between the origin and the first GPS record is over
0.5 km.

� Long Distance to Destination: Trips whose distance
between the last GPS record and the destination is
over 0.5 km.

3.2.3 Map Matching

After cleaning the trip dataset, we matched the path records
with the street network of Seoul to reduce possible noise in
GPS records. We used a well-known map matching algo-
rithm, ST-Matching [34], to convert the raw path records to
road network-bounded routes. For the matching process, we
used the OpenStreetMap (OSM) [35] road network dataset.
The OSM road network is mainly comprised of nodes and

segments. A node is a single point in space defined by its lati-
tude and longitude. A segment is a straight line between
exactly two nodes. With nodes and segments, we can repre-
sent and deal with all roads in the road network. We used
this road information for map matching. Among seven prin-
cipal types of roads in OSM, we chose to use only the pri-
mary, secondary, tertiary, and residential types of roads
after consultationwith our domain experts.

3.2.4 Collection of Route Attributes

To include routes in RCM analysis, the characteristics of
routes must be identified. Table 3 summarizes the route
attributes we collected and used in the RCM analysis. The
route attributes are those that our domain experts have
been interested in and actively studied. The data source and
detailed processing procedures can be found in the supple-
mentary materials, available online.

3.3 Task Analysis and Abstraction

From the current practice of domain experts, we have estab-
lished the following important tasks in the RCM analysis.
The tasks were iteratively revised through the iterative
design process with our domain experts. We used the visu-
alization design framework of Brehmer and Munzner [30],
[31] to describe our tasks; each task is described in the form
of [Action! Target].

Exploration Stage (E)

� E1: Summarize Trip Set. Users analyze data with spe-
cific conditions, such as trips that took place during
weekend or peak time, rather than the entire data.
Thus, they apply filters to summarize the trip set
[Summarize! Trip Set].

� E2: Explore Geographical Distribution of Trips. Users
explore how riders’ trips are geographically distrib-
uted, especially areas, flows, or roads with heavy traf-
fic [Explore! Feature].

TABLE 1
Station Attributes

Station Attribute Description

ID unique ID of a station
Type user-designated type of a station
In-flow OD Pairs set of OD pairs that have this station as a

destination (i.e., incoming OD pairs)
In-flow Traffic sum of all the in-flow OD pairs’ traffic
Out-flow OD Pairs set of OD pairs that have this station as an origin

(i.e., outgoing OD pairs)
Out-flow Traffic sum of all the out-flow OD pairs’ traffic
Total Traffic (i.e.,
Traffic)

sum of the in- and out-flow traffic (i.e., the
number of all trips associated with this station)

TABLE 2
ODAttributes

OD Attribute Description

OD Type Pair pair of origin anddestination station type
Number of Trips (i.e., Traffic) number of trips in an OD pair
Number of Routes number of routes in an OD pair
OD Distance straight distance between origin and

destination stations
Nonparametric Skew skewness measure for route attribute

distributions within an OD pair defined
for each route attribute [32]

Mean Silhouette Score mean of all trips’ silhouette scores in an
OD pair; details are described in
Section 4.1

Mean Estimation
Contribution Score

mean of all trips’ estimation
contribution scores (ECS) defined for
each route attribute; details are
described in Section 4.4

TABLE 3
Route Attributes

Route Attribute Description

Route Distance distance of a route in kilometer
Number of Intersections average number of intersections per

kilometer on a route
Number of Traffic Lights average number of traffic lights per

kilometer on a route
Primary Road Ratio ratio of primary road on a route
Secondary Road Ratio ratio of secondary road on a route
Tertiary Road Ratio ratio of tertiary road on a route
Residential Road Ratio ratio of residential road on a route
Bike Lane Ratio ratio of bicycle lane on a route

(independent to road type)
Maximum Upslope maximum gradient of upslopes (%)
Average Upslope average gradient of upslopes (%)
Maximum Downslope maximum gradient of downslopes (%)
Average Downslope average gradient of downslopes (%)
Average Slope average gradient of all slopes (%)
Path Size correction term of PSL model; the formula

can be found in supplementary materials,
which can be found on the Computer
Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/
TVCG.2021.3131824
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� E3: Identify Attribute Distribution of Chosen Routes.
Users inspect distributions of chosen routes’ attri-
bute values in each OD pair [Identify ! Distribution].
Thus, they can obtain an overview of riders’ percep-
tions of the route attributes and how biased the cho-
sen attribute values are before modeling.

Modeling Stage (M)

� M1: Perform Modeling with Different Sets of Hyperpara-
meters. Users perform choice set generation and
model estimation with various sets of hyperpara-
meters to find a meaningful model instance with a
high goodness of fit [Derive!Model Instance].

� M2: Obtain an Overview of Model Instances. Users
obtain an overview ofmany differentmodel instances
to identify their common or different patterns [Sum-
marize!Model Instance].

� M3: Compare Model Instances. Users compare statis-
tics and estimates between model instances to choose
a model instance for explaining route choice behav-
iors [Compare!Model Instance].

Reasoning Stage (R)

� R1: Discover Route Choices Contributing to an Estima-
tion Result. Users discover trips and OD pairs that
follow the model’s estimated coefficients well. For
example, when a model instance has a negative coef-
ficient for Route Distance, trips with a relatively short
travel distance within their OD pair are deemed to
contribute to the estimation result. As users investi-
gate such route choices, they aim to gain a deeper
understanding of the model and better explain the
route choice behaviors [Summarize! Trip Set].

� R2: Re-estimate to Obtain Better Fitting Model Instances.
An essential premise of RCM is that all individual
route choices have rationality. Therefore, if users
encounter route choices that seem irrational in rea-
soning, they remove these trips or OD pairs and re-
estimate the model. Their goal is to get a refined
model instance that is well fitted to the data and better
reflects riders’ perceptions [Derive!Model Instance].

4 ROUTE CHOICE MODEL

The general process of route choice modeling is twofold:
choice set generation and model estimation. In this section,
we will briefly describe the concept of each step and intro-
duce the methods used in our study.

4.1 Choice Set Generation

In the context of RCM, a choice set is a set of route options a
rider can choosewhen traveling from origin to destination. To
generate a choice set, we adopt a newly emerging approach
that utilizes the routes actually chosen by riders (i.e., observed
routes). However, the number of observed routes can be too
large formodeling. Our domain expertsmentioned that riders
tend to consider just several routes with distinct features
rather than considering the entire space of possible routes.
Based on the discussions with the experts, we decided to use
the k-medoids clustering algorithm [36] that they actively use
to group similar routes. The illustrative example of a choice
set generation process is shown in Fig. 1.

4.1.1 Clustering

We define T ¼ fti j i ¼ 1; 2; . . . ; ng as a set of trips, where n is
the number of trips, and ti refers to the trip with index i. Let
P ¼ fp j p ¼ ð oðtiÞ; dðtiÞ Þ; i ¼ 1; . . . ; ng be a set of OD pairs,
where oðtiÞ is an origin station of ti, dðtiÞ is a destination sta-
tion of ti, and p is a pair of origin and destination stations
(i.e., OD pair). Hereafter, we will use p to denote an arbitrary
OD pair, ðo; dÞ 2 P. Note that the size of P (i.e., jPj) is not
always equal to n since trips with the same OD pair may
exist. We perform k-medoids only on trips having the same
ODpair. Thus, we define TripsðpÞ ¼ Tripsððo; dÞÞ ¼ fti j ti 2
T; oðtiÞ ¼ o; dðtiÞ ¼ dg, which indicates a set of trips having
the same OD pair p ¼ ðo; dÞ 2 P. Accordingly, we need to
perform k-medoids on TripsðpÞ for eachOD pair p 2 P.

To quantify the distance between trips’ routes, we use
two types of distance: overlap distance takes the overlapping
segments of the two trips’ routes into account, and attribute
distance only considers the route attributes (Table 3) of the
two routes. There are four overlap distances: Overlapping
Distance, Overlapping Intersection, Overlapping Traffic Light,
and Overlapping Bike Lane Ratio. The values of these four
overlap distances are ratios; for example, Overlapping Traffic
Light is the ratio of the number of traffic lights on overlap-
ping segments to the number of traffic lights on the route
having the shorter Route Distance among the two routes.

Meanwhile, the attribute distance is computed by the
euclidean distance between a certain route attribute of two
trips. There are 13 attribute distances for the route attributes
shown in Table 3 excluding Path Size, as it is derived using a
generated choice set and is only used for the model estima-
tion step. In summary, the 17 distances mentioned above
can be used selectively, and the sum of the chosen distances
is used as a distance measure for k-medoids.

Fixing the number of clusters k to a specific number
equally for all OD pairs may not be effective because it is
likely that the number of representative routes could be dif-
ferent for each OD pair. Therefore, we provide two types of
k: the fixed (k) and bounded (k�) types. The bounded type

Fig. 1. Illustrative example of a choice set generation process for the trip
t2 traveling an OD pair ðo; dÞ.
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automatically finds an optimal value of k that best describes
the routes between an OD pair. The use of such an optimiza-
tion is indicated as a star (�); for example, k ¼ 5�means that
the clustering algorithm will test different k values, ranging
from 2 to 5, to cluster the trips in TripsðpÞ and choose the
clustering result with the best quality. As the clustering
quality measure we adopt the silhouette score [37]. To com-
pare the results, we use the mean silhouette scores of the
trips in TripsðpÞ since the silhouette score is obtained for
each trip. The same goes for evaluating the overall cluster-
ing quality of the set T.

After k-medoids on TripsðpÞ for every OD pair p 2 P
is done, we obtain k clusters of trips. We define the cluster-
ing result for TripsðpÞ as ClustersðpÞ ¼ fcj j j ¼ 1; 2; . . . ; kg,
where cj is one of the k clusters.

4.1.2 Choice Set

In this section, we introduce how we define a choice set
CSðtiÞ for each trip ti traveling an OD pair p using the
results of k-medoids ClustersðpÞ.

A choice set contains each route in the form of a feature
vector. We define a feature vector F ðtiÞ 2 Rjssj representing
route attribute values of the route taken by the trip ti. ss is a
user-designated subset of the route attributes (Table 3). Our
interface supports users to interactively choose the set ss.
One dimension of F ðtiÞ corresponds to the value of a route
attribute in ss for ti.

To extend the concept of a feature vector for a trip to a
cluster c (from k-medoids clustering), we define a cluster
feature vector F ðcÞ 2 Rjssj as follows:

F ðcÞ ¼
P

t2c F ðtÞ
jcj ; (1)

which is the mean of route attribute values of all trips t in
the cluster c. We call an hypothetical route having F ðcÞ as
its feature vector a representative route of a cluster c (Fig. 1).

A choice set is defined for each trip ti 2 T. We specify the
choice set of the trip ti (i.e., CSðtiÞ) as the set of F ðcÞ for all k
trip clusters c 2 Clustersð ð oðtiÞ; dðtiÞ Þ Þ, where ð oðtiÞ; dðtiÞ Þ
is the OD pair of the trip ti. However, we replace F ðcÞ with
F ðtiÞ only for the c containing the trip ti. This is because we
already know that the rider traveled the trip ti’s route among
all the routes of the trip cluster c. We define the choice set
CSðtiÞ as follows:

CSðtiÞ ¼ fF ðtiÞg [ fF ðcÞ j c 2 Clustersð ðoðtiÞ; dðtiÞÞ Þ; ti =2 cg :
(2)

That is to say, CSðtiÞ 2 Rk�jssj contains the trip ti’s feature
vector F ðtiÞ, and ðk� 1Þ cluster feature vectors F ðcÞ for all
clusters c in the results of k-medoids on ti’s OD pair except
for the one containing ti.

4.2 Model Estimation

The objective of the model estimation step is to estimate a
coefficient for each route attribute. Once the set of route
attributes to be estimated ss is decided, and choice setsCSðtiÞ
for all trips ti 2 T are generated, the probability of choosing a
specific route, called the route choice probability, can be com-
puted based on the utility value that riders can obtain when

choosing the route. The utility value of a feature vector F 2
Rjssj is defined as follows:

UðF; uÞ ¼ F � u ; (3)

where F can be either F ðtiÞ or F ðcÞ, u 2 Rjssj is the vector of
coefficients for each of the route attributes in ss, and � indi-
cates the dot product. When modeling route choices, it is
assumed that a route with a higher utility value is more
likely to be chosen. Therefore, the coefficient of each route
attribute directly affects the route choice probability. For
example, a positive coefficient for the Primary Road Ratio
indicates that riders are more likely to take routes with a
higher ratio of the primary road; however, we do not know
the exact coefficient values, so we want to estimate them.

As we adopt PSL model, the probability of choosing the
route of ti given the coefficients u is specified as follows [8]:

fðti j uÞ ¼ eUðF ðtiÞ; uÞP
F 2CSðtiÞ e

UðF; uÞ ; (4)

where e is the base of the natural logarithm. Then, the prob-
ability of observing all trips of the set T given the coefficient
vector u is as follows:

L ¼ fðt1; t2; . . . ; tn j uÞ ; (5)

which is called likelihood. Because PSL model relaxes IIA
property by including the term Path Size [8], we can assume
that the route choices of all trips are independent. Thus, we
can express the likelihood as follows:

L ¼ fðt1 j uÞ � fðt2 j uÞ � . . . � fðtn j uÞ : (6)

The goal is to estimate u that maximizes L. To this end,
we use an optimization method, maximum likelihood estima-
tion (MLE) [38]. For ease of computation, MLE maximizes
the following logarithm of L:

LL ¼ lnð fðt1 j uÞ Þ þ lnð fðt2 j uÞ Þ þ � � � þ lnð fðtn j uÞ Þ ;
(7)

which is called log-likelihood. As a result of MLE, we can
get the vector of estimated coefficients û 2 Rjssj that maxi-
mizes LL.

Note that û could be estimated differently depending on
which route attributes are included in the model (i.e., ele-
ments of the set ss). Regarding this, our collaborators men-
tioned that they usually perform many estimation trials by
including or excluding specific attributes and compare the
results to obtain insight into the route attributes.

4.3 Goodness of Fit

When comparing the quality between models, our domain
experts mainly use a measure of goodness of fit. Goodness of
fit is an indicator of how well a model fits the data. The �r2

(rho-squared-bar), a measure of goodness of fit widely used in
route choicemodeling, is specified as follows [39], [40]:

�r2 ¼ 1� LLfinal � jssj
LLinit

; (8)
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LLfinal ¼ lnð fðt1 j ûÞ Þ þ lnð fðt2 j ûÞ Þ þ � � � þ lnð fðtn j ûÞ Þ ;
(9)

LLinit ¼ lnð fðt1 j u0Þ Þ þ lnð fðt2 j u0Þ Þ þ � � � þ lnð fðtn j u0Þ Þ ;
(10)

where jssj is the number of elements in ss, and u0 2 Rjssj is the
zero vector indicating that all the route attributes in ss have
no effect on choosing routes. Since u0 makes the utility value
U (Equation (3)) to 0, fðti j u0Þ (Equation (4)) equals to 1=k
when the k is the fixed type. This makes LLinit the constant
value, �n lnðkÞ. Note that LLfinal (i.e., final log-likelihood)
and LLinit (i.e., initial log-likelihood) are all negative, so
maximizing LLfinal (i.e., closer to 0) brings �r2 closer to 1. In
other words, we can think of better estimation as maximiz-
ing the gap between LLfinal - LLinit. jssj is a penalty term
that makes �r2 smaller as the number of the route attributes
to be estimated increases.

4.4 Estimation Contribution Score

To measure howmuch an arbitrary trip contributes to yield-
ing the estimated coefficients û, we define the estimation
contribution score (ECS). If the route choice probability of
the trip ti (Equation (4)) significantly increases with û after
model estimation, we can say that û explains the route

choice behavior of the trip ti well. In that sense, we define
the ECS of ti as follows:

ECSðtiÞ ¼ lnð fðti j ûÞ Þ � lnð fðti j u0Þ Þ: (11)

We can think of trips with a larger ECS make greater contri-
butions to estimating u as û since those trips contribute to
make LLfinal - LLinit larger. The ECS for the specific route
attribute a 2 ss can be defined as follows with the same logic
as Equation (11):

ECSaðtiÞ ¼ lnð fðti j ûÞ Þ � lnð fðti j ûa¼0Þ Þ ; (12)

where ûa¼0 2 Rjssj is the vector identical to û except that its
coefficient of the route attribute a is zero (i.e., the effect of a
for modeling route choices removed). Not only a trip, but
we can also measure the ECS of an arbitrary OD pair p. To
do this, we take the mean ECS of all trips t 2 TripsðpÞ.

5 THE RCMVIS DESIGN

The RCMVis design is guided by the three analytic stages
found during the domain situation analysis: these stages are
presented as separate tabs on the header of the interface
(Fig. 2), and users can switch between the stages by clicking
on the corresponding tab.

Fig. 2. Interface for the exploration stage. Users deal with a trip set, a set of bicycle riders’ trips, throughout the entire analysis process. In the explora-
tion stage, users explore the geographical distribution of a trip set and apply filtering conditions to a trip set for preparing the modeling stage. (A) The
header of the trip set list shows information about the currently activated trip set, which is called an active trip set. (B) The OD-Trip view shows distri-
butions of time, OD, and route attributes and allows users to interactively apply filtering conditions to the active trip set. (C) The OD bubble plot repre-
sents an OD pair as a bubble and supports brushing to help users selectively see the OD pairs of their interest. (D) The map view shows both OD-
level and road-level geographical distributions of the active trip set in a flow map and a road heatmap, respectively. (E) The station view allows users
to rearrange and compare stations and their attributes.
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5.1 Exploration Stage

Our domain experts visually explore trips as the first step of
RCM analysis. The main goal of the exploration stage is to
explore and prepare trip sets for the next stage (i.e., model-
ing). A trip set is a subset of trips that satisfy specific filter-
ing conditions of interest, such as trips that took place
during the weekend or trips where the Route Distance is
shorter than 2 km.

Users can manage trip sets in a trip set list (Figs. 2A and 3).
They can activate a trip set by clicking on its name in the trip
set list, and hereafter we call an activated trip set an active
trip set. Activating a trip set is crucial, as the subsequent visu-
alizations and interactions happen on the active trip set; this
reflects the practice where domain experts work on one trip
set at a time. Trip sets are added initially without filtering
conditions (thus, including all trips in the data) but can be
adjusted in the OD-Trip view.

In addition to the trip set list, the exploration interface
provides the OD-Trip view, an OD bubble plot, a map view,
a station view, and a route view. The OD-Trip view
(Fig. 2B) allows users to modify filtering conditions applied
on the active trip set (Task E1). The other four views were
designed for understanding the characteristics (Tasks E2
and E3) of the active trip set, such as OD attributes (OD bub-
ble plot, Fig. 2C), geographical distribution (map view,
Fig. 2D), station statistics (station view, Fig. 2E), and indi-
vidual routes (route view, Fig. 5C).

5.1.1 OD-Trip View

The OD-Trip view (Fig. 2B) supports the interactive modifica-
tion of filtering conditions applied to the active trip set
(Task E1). The filtering conditions are represented as badges
in the view header (Fig. 2 (1)).

The conditions can be divided into two types: by departure
time and by attributes. The two time bar charts (i.e., two bar
charts on the left of the OD-Trip view) summarize the num-
ber of trips aggregated by departure time, such as time of day
(AMpeak (from 07:00 to 10:00),Mid-day (betweenAM and PM
peak), PM peak (from 17:00 to 20:00), and Overnight (between
PM andAM peak)), and day of the week. All these time spans
were determined, reflecting domain experts’ exploration
practice identified during the domain situation analysis.

The attributes panel on the right visualizes the active trip
set’s OD pairs and associated trips with their attributes. In
this panel, a column represents either an OD or route attri-
bute of OD pairs. A column header shows the distribution
of the corresponding attribute as a matrix or a histogram.
Below the column headers, each row (Fig. 4 (1)) represents
an OD pair and its attribute values.

In the first column, there is an OD type matrix (Fig. 4A).
Users can define their own station type and assign it to the
stations they want in the map view described in the later
section. A station type is represented as a symbol through-
out the system, and the system supports up to four types.
The matrix row and column represent origin and destina-
tion types, respectively. The color saturation of a matrix cell
represents the number of trips of all the OD pairs having
the corresponding OD type pair. Below the column header,
station type symbols and IDs of origin and destination are
shown in each row (Fig. 4 (1)).

All the remaining columns represent numerical attrib-
utes, and each of them shows an attribute distribution
histogram (Figs. 4B and 4D). Users can distinguish
between time, OD, and route attribute by color: time as
cyan, OD as orange, and route as blue. We apply the
identical color scheme to the filter badges in the view
header. In each row below the column headers, we visu-
alize an OD attribute value as a horizontal orange bar,
but route attribute values are represented as a barcode
plot with blue bars (Fig. 4 (2)) since there can be multiple
trips in a single OD pair.

The OD-Trip view supports two types of filtering with
different targets: an OD, and a trip filtering. The OD filter-
ing inspects all OD pairs in a trip set and filters them out
that do not meet the given conditions. Whereas, the trip fil-
tering inspects all trips, and filters out trips. Then, OD pairs
with no trips left also get filtered out. The supported filter-
ing conditions are summarized in Table 4.

5.1.2 OD Bubble Plot

The OD bubble plot (Fig. 2C) represents each OD pair as a
bubble, encoding the number of trips of the OD pair to the
area of the bubble. Users can designate two OD attributes,
which are mapped to the x- and y-axes using the two drop-
down lists at the bottom . Note that OD attributes also
include derived statistics of the underlying trips, such as
the nonparametric skew (Table 2) of trips’ Bike Lane Ratio
(Fig. 5A), and identifying the distribution of such statistics
can give a preliminary view of how a route attribute affects
route choice behavior. In addition, the OD bubble plot sup-
ports brushing and linking; users can brush on particularly
interesting bubbles (Fig. 5 (1)) so that only the correspond-
ing OD pairs remain visible in the map view and the station
view.

Fig. 3. The trip set list shows a list of trip sets created by users. The
name of the active trip set is shown in blue. Each trip set row contains
the icons for showing lock status, renaming, copying, and deleting the
trip set. To the right of the icons, filtering conditions on the trip set are dis-
played in badges.

Fig. 4. The attribute panel of the OD-Trip view shows each OD or route
attribute as a column. The column header shows (A) the OD type matrix
and (B, D) the distribution histograms of an OD (in orange) and route
attribute (in blue). Below the header, (1) each row represents an OD pair
and it shows the details for the corresponding columns.
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5.1.3 Map View

The map view (Fig. 2D) allows users to grasp the geographical
distribution of the trips. To this end, the map view shows
visual elements of the following targets: station, OD pairs,
and road segments (introduced in Section 3.2.3). Every visual
element has its own traffic, although the definition of traffic
is slightly different for each target.We describe the exact def-
inition of traffic for each target later in this section.

Instead of encoding the traffic directly, we convert each
element’s traffic into the following weight according to
Wood et al. [41]:

welem ¼ Trafficelem
TrafficMaxelem

� �1:5

; (13)

where Trafficelem is the traffic of the element, and
TrafficMaxelem is the maximum traffic among the elements

of the current target (i.e., station, OD pair, or road segment).

We use the weight welem because it increases exponentially

as the traffic increases; thus, it makes elements with rela-

tively large traffic more prominent than other elements with
little traffic. The power 1.5, derived from the empirical

experiments, is known to provide the right balance between

dominant and less frequent elements [41].
The map view represents each station as a glyph whose

size and color redundantly encode the traffic. The traffic of
a station indicates the total traffic (Table 1), which is the sum
of incoming and outgoing (i.e., in- and out-flow) traffic. The
shape of a glyph represents its station type as in the OD

TABLE 4
Filtering Conditions

Fig. 5. (A) Illustrative example of the nonparametric skew for Bike Lane Ratio of an OD pair. (B) The OD bubble plot represents an OD pair as a bub-
ble. Users can brush on bubbles with the rectangular area (1) by mouse dragging. If users want to figure out the routes between a specific OD pair,
they can click the bubble to open the route view. (C) The route view shows the geographical information and the route attributes of a specific OD pair,
via the map and the route heatmap, respectively.
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type matrix in the OD-Trip view. To represent the other two
targets (i.e., OD pair and road segment), we overlay two vis-
ualizations on the map view: a flow map (Fig. 2D) and a road
heatmap (Fig. 9B). These allow users to explore the geo-
graphical distribution of different targets (Task E2); in the
flow map, trips are aggregated and shown as flows between
OD pairs, while in the road heatmap, the traffic on individ-
ual roads is color-encoded.

The flow map (Fig. 2D) shows the number of trips
between an OD pair as a curved edge. We adopt the edge
rendering technique presented by Wood et al. [41], as it is
computationally cheap enough to render a large number of
flows responsively. The color and thickness of each edge is
proportional to welem. The thickness of an edge is set to
5welem pixels. To show the direction of an edge, we use a
Bezier curve, which was originally proposed by Fekete
et al. [42]. To make both ends of an edge distinguishable,
we draw a curve straighter at the origin and sharper at the
destination.

The road heatmap (Fig. 9B) encodes the number of trips
passed down each road segment to the color of a line. There-
fore, road segments with higher traffic are represented in a
more reddish and saturated color. In addition, the road heat-
map panel (Fig. 9B) allows users to selectively see only the
road types (i.e., primary, secondary, tertiary, and residential)
they want. Independent of the road types, bike lanes can be
installed on any of the road types. By clicking on the “Bike
Lane” checkbox, bike lanes are overlaid in green segments
on road segments with a thinner line (Fig. 9B).

The maximum traffic for each target, TrafficMaxelem,
plays an important role in determining the density of the
visual elements in the map view since their sizes depend on
it, as shown in Equation (13). For example, an outlying OD
pairwith very high trafficwill suppress other ODpairs,mak-
ing the elements for the OD pairs too small to see.Whereas, if
TrafficMaxelem is too small, even relatively insignificant ele-
mentswill be over-plotted. To alleviate this, we parameterize
TrafficMaxelem for each target to allow users to interactively
adjust it from the minimum value (1) to the actual maximum
traffic through the slider control (Fig. 2 (2)). Depending on
TrafficMaxelem that users set,welem can exceed 1,making ele-
ments too large on the map. So, we clamped welem to be in a
range ½0; 1�. To further alleviate visual clutter, we hide edges
that are thinner than 0.5 pixels.

The map view supports brushing on stations, and this is
especially useful when understanding the traffic in a spe-
cific area (e.g., 500-m neighborhood from a specific subway
station). For brushing, three drawing shapes are provided:
polygon-, rectangle-, and circle-shaped (Fig. 2 (4)). The
brushed stations’ borders are thicker and rendered in blue
(Fig. 2 (6)).

Once a certain set of stations is brushed, users can assign
them to a new station type in the station type panel (Fig. 2
D). Since the assigned station type is represented as a dis-
tinct symbol, this can help users gain further insight by tak-
ing the semantics of the station type into account in the
analysis. We tried applying Bubble Sets [43] to highlight the
membership of stations of the same type. However, we
eventually decided not to use it since it often obscured other
visual elements, and the domain experts did not find
insights through it.

It is possible to brush on the predefined station sets and
manage them as an independent station type. In the station
type panel, there is a station preset drop-down list. After
selecting the desired list item, users need to click on the
“Select” button at the right side of the list. Then, the preset
stations are brushed on the map. By doing so, users can
brush on and label stations such as stations close to a sub-
way or stations in a commercial area.

5.1.4 Station View

The station view (Fig. 2E) visualizes each station as a row in
the table-based interface. Therefore, this view shows sta-
tions and their attributes without interference from other
visual elements. Additionally, users can sort the stations by
traffic and compare them by their attributes.

The station view visualizes three important types of
information about a station: total traffic, in-flow traffic, and
out-flow traffic (Table 1). At the center of a row, there is a hor-
izontal bar representing the total traffic of a station (i.e., total
traffic bar). There are columns representing in-flow and out-
flow on the left and right of the total traffic. The x-axis of the
two columns encodes the OD Distance (Table 2). We repre-
sent a station as a collection of associated OD pairs. We
visualize each OD pair as a bar (i.e., OD bar) at the corre-
sponding position on the x-axis.

In designing the station view, we mainly considered the
consistency and interactivity of the map. The reason for
doing so is to allow users to identify the geographical distri-
bution of data represented in the station view to perform
Task E2. For example, we make the color of the total traffic
bars the same as that of the station symbol in the map view.
The shape on the left of the total traffic bar represents a sta-
tion type and is also the same as the map view. The OD bars
of in-flow and out-flow share the same color and thickness
as the map view’s edge. Moreover, by adjusting the
TrafficMaxelem value in the panels of the map view, all the
visual elements of the station view mentioned above are
synchronized accordingly, as in the map view. Since the sta-
tion view and the map view are closely connected in this
way, users may not have any difficulties in using both views
in succession. When users want to focus on the station’s
type information, the unique color for the station type can
be encoded in the OD bars and the total traffic bars (Fig. 7).

5.1.5 Route View

The route view (Fig. 5C) shows the details of all routes taken
between a particular OD pair, such as matched paths and
route attributes. Unlike the aforementioned views, the route
view allows users to take a detailed look at geographical dis-
tribution or route attribute distribution within a single OD
pair (Tasks E2 and E3). Users can open the route view by
clicking on any visual element representing an OD pair, such
as a bubble in the OD bubble plot or a row in the OD-Trip
view. The route view consists of two parts: a route map and a
route heatmap. The route map shows all routes of the target OD
pair on a map, while the route heatmap shows route attributes
(Table 3) as a heatmap, where each row represents a route
attribute and each column represents a route. Cells in the
heatmap can either show the raw values as text or color-
encoded as the normalized route attribute (i.e., the attribute
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divided by the maximum value on the same attribute). The
route map and the route heatmap are linked; a route focused
on in one visualization is highlighted in the other.

5.2 Modeling Stage

After users create trip sets in the exploration stage, they can
fit a route choice model to a trip set in the modeling stage.
The modeling process consists of two procedures: choice set
generation and model estimation. The configuration view
(Fig. 6B) allows users to specify hyperparameter configura-
tions for the two procedures (Task M1), and the model view
(Fig. 6C) allows users to explore produced model instances
based on an Overview+Detail approach (Tasks M2 and M3).

5.2.1 Configuration View

The configuration view (Fig. 6B) allows users to produce
hyperparameter configurations for choice set generation and
model estimation.We chose a data-driven approach to gener-
ate choice sets, where we cluster the observed routes (routes
that are actually taken). Once the choice sets for all trips are
generated, we fit a model that predicts the probability of

routes being chosen from their characteristics (i.e., route
attributes).

As introduced in Section 4.1.1, we adopted the
k-medoids clustering algorithm that our domain experts are
actively using. To measure the distance between trips’
routes, we provide 17 distances with two types; four of
them are the overlap distances (Fig. 6 (1.1)), and the rest are
the attribute distances. Details of the 17 distances are already
described in Section 4.1.1. Users can choose a subset of dis-
tances that will be included in distance computation, and
we will denote such a subset of distances as a vector g. g is a
17-dimensional binary vector where each dimension repre-
sents whether a certain distance that will or will not be
included in calculation of the distances between routes.

We support two types of the number of clusters k: the fixed
(k) and bounded (k�) types as defined in Section 4.1.1. We
denote a hyperparameter configuration for the k-medoids
clustering algorithm as � ¼ ðk; seedÞ, where k can be either a
fixed or a bounded type, and seed is a seed number for ran-
domnumber generation.

In practice, experts test different hyperparameter combi-
nations based on their knowledge (Task M1) since it is hard

Fig. 6. The interface for the modeling stage. (A) The trip set list shows the information of the active trip set as in the exploration interface. (B) The con-
figuration view enables users to configure sets of hyperparmeters used in the two primary modeling process: choice set generation and model esti-
mation. (C) The model view shows the model estimation results, calledmodel instances.
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to figure out the best values for the hyperparameters (g and
�) for choice set generation, for example, in terms of silhou-
ette coefficient. To streamline this process, we allow experts
to specify a set of hyperparameters for distance computa-
tion, GG ¼ fg1, g2, g3, ...g, and a set of hyperparameters for
clustering, LL ¼ f�1, �2, �3; . . .g), and test all possible combi-
nations ðgi; �jÞ in the Cartesian product of the two, GG� LL.

The distance panel (Fig. 6B.1) allows users to configure GG.
There are 17 check boxes in the panel, so users can include or
exclude a distance for calculation of distances between
routes. Clicking on theþ symbol on the right will add a new
configuration, gi, to GG (Fig. 6 (2)). Similarly, the method panel
(Fig. 6B.2) allows users to configure �j ¼ ðk; seedÞ 2 LL.

After configuring the sets of hyperparameters for choice
set generation (GG� LL), they click on the “Generate Choice
Sets” button to generate clustering instances. Each set of hyper-
parameters will generate one clustering instance; therefore,
jGGj � jLLj clustering instances will be generated. An instance
appears as a row in the clustering instance table (Fig. 6B.3). As a
qualitymeasure for a clustering instance, we use themean sil-
houette score (Mean SS in the table), which is defined by aver-
aging the silhouette scores of all trips in the active trip set.

In the model estimation procedure, users fit a PSL model
(Equation (4)) to each clustering instance. Similar to choice
set generation, users must choose a set of model attributes, s
(introduced in Section 4.1.2), which are route attributes
used as independent variables in modeling. Similar to speci-
fying GG and LL, users specify different combinations of
model attributes, SS ¼ fss1, ss2, ss3; . . .g in the model attribute
panel (Fig. 6 B-4). Finally, users click on the “Estimate Mod-
els” button to fit a model to each of clustering instances
using one configuration of model attributes ssi 2 SS, obtain-
ing jGGj � jLLj � jSSj model instances as a result.

5.2.2 Model View

The model view (Fig. 6C) supports an Overview+Detail
approach for exploring the jGGj � jLLj � jSSj model instances.

From the overview (Fig. 6C.1), users can grasp overall pat-
terns of the model instances (Task M2). From the detail
(Fig. 6C.2), users can compare the instances with the help of
the interactions, such as sorting, grouping, and hiding
unnecessary results (Task M3). If there is an interesting
model instance during the analysis, further investigation of
the instance can be done in the reasoning interface.

The model scatterplot (Fig. 6C.1) serves as an overview of
the model view. It represents each model instance as a single
point. Reflecting domain experts’ modeling practice identi-
fied during the domain situation analysis, we decided to
map the mean silhouette score and �r2 (rho-squared bar) to the
x- and y-axes, since the two indices are the performance
measures for choice set generation and model estimation,
respectively. Users can distinguish the trip set of the model-
ing result through the shape of a point. The hue of a point dif-
ferentiates the type of k: the fixed type (k) as purple and the
bounded type (k�) as red. Further, the more saturated the
color is, the higher the absolute value of k is. To get details of
certain points, the model scatterplot supports brushing and
linking; users can brush on points they want to investigate
further, and then the corresponding rows of the model
instance table are highlighted in a gray background.

The model instance table (Fig. 6C.2) shows the details of
each model instance. This table represents each model
instance as a row. A row contains information about a
model summary, a set of hyperparameters (GG� LL� SS), and
estimated coefficients of model attributes. The table cells
represent their value as a horizontal bar to help users com-
pare values within the same column. When interpreting
coefficients, the first thing users inspect is the sign of a value
since different signs lead to the opposite meaning of the
attribute in the modeling context. For instance, a negative
Route Distance coefficient means that riders tend to avoid
routes with longer distances. Therefore, we decided to
differentiate the bar color to allow users to recognize it at
a glance: positive as red and negative as blue. In addition,
the cells show a single asterisk or two when their route

Fig. 7. The interface for the reasoning stage. This interface visualizes a selected model instance called an active model instance based on the views
used in the exploration interface. (A) The header of the model view shows information about the active model instance, such as the number of trips
and OD pairs, �r2 (rhoSB in the interface), and statistically significant attributes and their coefficients. By clicking on the rightmost icon of the header,
users can open the model view, which allows users to scan and even change the active model instance.
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attribute’s estimated coefficient is statistically significant
(p < :05 and p < :01, respectively) (Fig. 6 (5)).

For an effective comparison between the model instances
(Task M3), the model instance table supports sorting or
grouping rows by each column or hiding rows that do not
seem important. The columns representing numerical val-
ues, such as the �r2 (rhoSB in the interface), can be used to
sort rows. Other columns related to the set of hyperpara-
meters, such as the k (LL), the set of distances (GG), or the set
of model attributes (SS), can be used to group rows. The
common analysis scenario using grouping is to investigate
the effect of the set composition of model attributes (SS) on
model instances; users can group by SS, as in Fig. 6C.2.

If users find a model instance that well describes route
choice behaviors, they want to explore it at the data level,
such as OD pairs or trips. This can be done by clicking on
the magnifying lens icon on the left of the target model
instance row. Then, the reasoning interface is activated to
allow exploring the instance.

5.3 Reasoning Stage

To better understand the model instance at the data level,
users should analyze the instance in the reasoning stage.
The analysis target of this stage is the selected model
instance in the modeling stage, and we call it an active model
instance, similar to an active trip set of previous stages. Fur-
ther, the model view at the top of the reasoning interface
(collapsed in Fig. 7A but can be opened) allows users to
scan all the model instances and switch the active model
instance in the same manner as in the modeling interface.

In the reasoning interface, the views are mostly the same
as the exploration interface except for the model view. This
is because users need to analyze the data included in a trip
set, such as OD pairs, trips, and stations, in the same way as
in the exploration stage. However, the statistics derived
from the active model instance are provided to help users
perform an in-depth analysis of the model instance in the

trip set data space. For example, statistics such as the estima-
tion contribution score (ECS) allow users to selectively
explore data that contribute to the estimated coefficients. To
this end, users can brush OD pairs having high ECS in the
OD bubble plot and closely inspect their characteristics in
the map view or the station view. By doing so, users can
determine which trips or OD pairs mainly contributed to
estimating the coefficients (Task R1).

The reasoning interface facilitates re-estimation of the
active model instance by applying more filtering conditions
(Task R2). The general workflow of the re-estimation pro-
cess is shown in Fig. 8. To help select the OD pairs used for
re-estimation, the OD bubble plot shows the expected �r2 (rho-
squared-bar). This value is obtained by substituting the
LLfinal (Equation (7)) calculated with only the trips con-
tained in the brushed OD pairs for the LLfinal in �r2 (Equa-
tion (8)). The expected �r2 is immediately displayed when
users are brushing OD pairs on the bubble plot. Users can
refer to this value to determine which OD pairs to keep and
re-estimate model coefficients from them.

After brushing the OD pairs, the brushed x and y ranges
of the OD bubble plot can be exported to the OD-Trip view’s
filtering conditions, respectively. As in the exploration stage,
the two filtering conditions can be applied to the active
model instance by clicking on the “Apply Filters” button.
Then, by clicking on the “Re-estimate” button, the re-estima-
tion of the filtered active model instance starts with the same
set of hyperparameters that the active model instance used
before. The newly estimated instance is displayed as a new
row in themodel view.

6 EVALUATION

In this section, we evaluate the design of RCMVis through a
case study and expert interview.

6.1 Case Study

We conducted a case study with two of our domain experts
(P1 and P2). They participated in the case study together
and had a one-hour tutorial session to learn the features of
RCMVis before participating in the case study. We allowed
them to use the system for 90 minutes and then interviewed
them for 30 minutes. All the processes were done remotely
due to the COVID-19 pandemic. The same bicycle trip path
dataset in Section 3 was used in the case study. The experts’
main goal is to obtain insights on which road factors are
considered by bicycle riders when choosing a route and
where such behaviors are strongly seen.

6.1.1 Exploration Stage

One of the primary purposes of operating public bicycle
systems is to provide a means of transportation connected
to public transportation. For example, bicycles allow com-
muters to quickly move from home to a subway station (i.e.,
the first mile) and from a subway station to an office (i.e.,
the last mile), even during peak hours. Hence, the experts
were first interested in traffic occurring during peak hours.
To view such traffic in the exploration view, they first
applied three filtering conditions on the OD-Trip view to
derive the active trip set comprised of weekdays, AM/PM
peaks, and short-distance (0—2km) trips (Task E1; Fig. 2

Fig. 8. The re-estimation process to obtain a refined model instance with
a higher goodness of fit. The OD bubble plot shows (1) the expected �r2

when the user re-estimates the active model instance using only the
brushed OD pairs. By clicking on (2), the filtering conditions correspond-
ing to the brush are transmitted to the OD-Trip view. After applying filter-
ing conditions, users re-estimate the model instance with the filtered OD
pairs and the set of hyperparameters that the model instance has. Then,
the re-estimated model instance (3) appears in the table.

SHIN ETAL.: RCMVIS: AVISUAL ANALYTICS SYSTEM FOR ROUTE CHOICE MODELING 1811



(1)). Then, they defined a new station type consisting of pre-
defined “near subway” stations (Fig. 2 (3)). They postulated
that most of the first or last mile riders had used these “near
subway” stations as their origin or destination. After creat-
ing the new type, the “near subway” type stations appeared
as cross symbols on the map view.

Geographical Distribution of Trips. To understand the geo-
graphical distribution of the trips, they attempted to locate
heavy traffic regions on the flowmap (Task E2). In particular,
they wanted to identify the trip distributions for some areas
they frequently investigate in their usual analysis and re-con-
firm from the real-world data that these areas are worth ana-
lyzing. Initially, most of OD pairs on the flow map were
suppressed due to a few OD pairs with excessive traffic, so
the experts could hardly see the overall distribution of the
trips. To make the suppressed OD pairs visible, the experts
adjusted TrafficMaxelem on the flowmap (Fig. 2 (2)).

Subsequently, they discovered two prominent areas
(Figs. 2 (5) and 2 (6)) with high traffic. Fig. 2 (5) isHongdae, one
of the city’s most popular downtown areas, with a large float-
ing population. The major subway line also passes through
this area. Fig. 2 (6) is Yeouido, a central business district of this
city, where many office workers commute. Interestingly, both
regions were ones they often analyzed, yet they were able to
discover unexpected traffic distributions in these areas. In
Hongdae, the flows from surrounding areas were highly con-
centrated on a specific “near subway” station (i.e., “Hongik
University Station Exit 2”). Unlike Hongdae, Yeouido had
noticeable flows between several “near subway” stations in
the outer areas and the center, where many companies were
located. The experts speculated that these flows might be the
trips of officeworkers commuting to and fromYeouido.

There were three stations with relatively high traffic
among the “near subway” stations in Yeouido (blue-bordered
cross symbols in Fig. 2 (6)). To investigate the ODpairs associ-
ated with those stations, the experts clicked on them on the
flow map to highlight the corresponding rows in the station
view. In the station view, they determined that those stations’
out-flow traffic was higher than in-flow (Fig. 2 (7)), which
implies that riders mainly used bicycles in Yeouido for last-
mile riding. They noted that this finding could be useful in
rebalancing bicycles in Yeouido during peak hours.

Route Choice Behaviors. Before modeling, the experts
attempted to hypothesize about route choice behavior by
checking the distortion of the distribution of route attributes
(Task E3). In the OD bubble plot, the total mean nonpara-
metric skew for Route Distance was about 0.23 (orange dot-
ted line in Fig. 2C), indicating that route choices were
biased toward routes with relatively short distances. The
experts mentioned that commuters tend to choose a shorter
route because they want to reach their destination quickly;
the finding was consistent with their background knowl-
edge. Therefore, the experts expected a negative coefficient
for Route Distance, although it could vary depending on a
set of hyperparameters used in the modeling stage.

They also tried to identify the nonparametric skew of
attributes they were interested in, such as the Maximum
Upslope and Bike Lane Ratio, whichwere 0.11 and -0.03, respec-
tively (Task E3). Although the nonparametric skew of Maxi-
mum Upslope was not as large as that of Route Distance, the
result was consistent with the general notion that riders do

not prefer slopes. For Bike Lane Ratio, the experts initially
expected that riders would prefer roads with bike lanes. Cor-
respondingly, the sign of the nonparametric skew was nega-
tive as expected, but the absolute value was relatively small
(-0.03). Regarding this result, the experts mentioned that it
might be due to the OD pairs with low diversity of routes. For
example, some OD pairs may not have bike lanes on their
routes, or in extreme cases, all routes have a high ratio of bike
lanes. When riding between such an OD pair, riders have no
choice but to choose a route with or without a bike lane. To
eliminate the influence of such OD pairs, they applied a filter-
ing conditionOD-TripRange (Task E1; Table 4). This condition
left only OD pairs that contained both trips whose Bike Lane
Ratiowas less than 0.2 and greater than 0.8 (Fig. 4C). The non-
parametric skew after filtering changed to -0.07, which was
slightly larger than before but not very impressive (Fig. 5B);
they decided to remove this condition.

They found an interesting ODpair in the bubble plot. That
OD pair was positively skewed, unlike the mean (-0.07), and
had high traffic (Fig. 5 (2)). This indicated that bike lanes
were not preferred in this OD pair, contrary to the expecta-
tion. To learnmore about the trips of this ODpair, the experts
clicked on the bubble to open the route view.

In the route view (Fig. 5C), the experts found that the
region around this OD pair was industrial based on the
names and locations of the stations. There was a subway
station near the destination (“In front of Seongsu Station
Exit 2”). The experts speculated that the traffic of this OD
pair had resulted mainly from factories or offices to the sub-
way station to return home. To identify routes with a high
Bike Lane Ratio, they sorted the routes by Bike Lane Ratio in
the heatmap. This revealed an appreciable pattern, routes
with a low Bike Lane Ratio had a high Residential Road Ratio
(Fig. 5 (4)). Considering that bike lanes are mainly installed
on primary or secondary roads in this city, the experts spec-
ulated that riders’ choice of residential roads over primary
or secondary roads also affected bike lane choice. They also
mentioned that riders sometimes choose residential roads
rather than other roads because residential roads are rela-
tively wider for riding bicycles. This OD pair seems to be a
good example of such riding.

6.1.2 Modeling Stage

After exploring the active trip set, the experts started to con-
figure a set of hyperparameters for modeling (Task M1).
They wanted to determine the usefulness of the k-medoids
clustering algorithm as a method of choice set generation.
Their main concerns were to find the optimal set of distan-
ces between routes and the hyperparameter k. In particular,
they wanted to test the effectiveness of overlap distances
(Fig. 6 (1.1)) compared with attribute distances (Fig. 6 (1.2)).
Therefore, they created three sets of distances (jGGj ¼ 3): a set
with only the overlap distances (gO), a set with only the
attribute distances (gA), and a set with both distances (gOþA)
(Fig. 6 (2)). Concerning the k, they decided to test all possi-
ble values (jLLj ¼ 9): five fixed and four bounded k values
(Fig. 6B.2) with the same seed.

Overview and Comparison of Model Instances. The cluster-
ing instance table (Fig. 6B.3) shows the results of choice set
generation (i.e., clustering instances). The mean silhouette
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scores (Mean SS in the interface) were higher when only the
attribute distances (gA) were used (Fig. 6 (3)). The experts
found it interesting that the scores of gO and gOþA were far
lower than the score of gA. The reason behind these results,
they conjectured, is that as the overlap increases the similar-
ity of routes’ attributes also increases, but the opposite may
not be true. Regarding k, there was a difference in the pat-
tern of scores between using the fixed k and bounded k. In
the case of the fixed k, the scores decreased as k increased.
Conversely, with the bounded k, the score always increased
as k� increased. Since the bounded k selects the k with the
highest score within a range, it was more effective in obtain-
ing high silhouette scores.

To estimate models from the clustering instances, the
experts chose sets of model attributes SS (Task M1; Fig. 6B.4).
They included Path Size in all sets because they always used
it as a correction term when estimating the route choice
model except for some unusual cases. Tertiary Road Ratiowas
excluded since the sum of all the road type ratios on a route
is always 1, which can cause multicollinearity. In addition,
they added the sets using only the maximum slopes (i.e.,
Maximum Upslope and Maximum Downslope) instead of the
average slopes. Finally, the set with a small number of attrib-
utes was added by including only Route Distance, Bike Lane
Ratio, and Path Size. Before estimation, the experts expected a
positive correlation between the silhouette scores and the �r2

(rho-squared bar) of the model instances; the better a cluster-
ing instance is (i.e., with a high silhouette score), the better a
model instance fits the clustering instance (i.e., with a high
goodness of fit or �r2).

After the model estimation process had been done, the
model scatterplot (Fig. 6C.1) showed the overview of the
model instances with the mean silhouette score on the
x-axis and the �r2 on the y-axis (Task M2). As expected, there
seemed to be a positive correlation between the two. The
experts looked into the instances with the high �r2 at the
upper right (Fig. 6 (4)). According to the reddish colors of
the instances, they noticed that most of the high �r2 instances
had the bounded k; however, they found that the model
instance with the highest �r2 had the fixed k and was repre-
sented as a light purple point in the plot.

To determine the details of these model instances, the
experts started to inspect the instances in the model instance
table (Task M3; Fig. 6C.2). They sorted the rows by �r2 to see
the instances with a high goodness of fit. Then, they found
that the instance with k ¼ 2 had the highest �r2. However,
they were not sure if k ¼ 2 simulates the actual trips effec-
tively because it oversimplifies routes into just two cases;
thus, they made these instances hidden from the list. By
doing so, the instances that used only the attribute distances
for clustering (gA) with k from 3� to 6� became the best
instances in terms of the �r2 (Fig. 6 (4)). To further inspect
these promising instances, they hid all other instances. Then,
they grouped the remaining instances by the set of model
attributes to identify the patterns of attribute coefficients.

In most model instances, the attributes Route Distance and
Number of Intersections had negative coefficients and were
statistically significant. This was consistent with the com-
mon-sense notion that riders do not prefer long routes and
many intersections. Moreover, the results indicated that
riders preferred primary and secondary roads to residential

roads (Fig. 6 (6)) unlike the situation of the one OD pair in
Fig. 5 (4). Interestingly, Bike Lane Ratio was significant only
when Primary Road Ratio and Secondary Road Ratio were not
included in the set of model attributes (Fig. 6 (7)). Since bike
lanes are commonly installed on primary or secondary roads
in this city, the experts thought that correlations between
these road types might be responsible for these results. For
the same reason,Number of Traffic Lights also showed similar
results as Bike Lane Ratio (Fig. 6 (5)). Based on these results,
the experts decided not to include Number of Traffic Lights,
Primary Road Ratio, and Bike Lane Ratio together in the same
set of model attributes since they are correlated.

Regarding the attributes about slopes, Maximum Upslope
and Average Upslope, the coefficients were all negative and
statistically significant (Fig. 6 (8)). Considering that the two
attributes had similar meanings and the coefficients were
similar, the experts commented that it would be good to use
only one of the two attributes at a time in future analysis.

Based on the findings so far, the experts refined the
model estimation procedure with a new set of model attrib-
utes: ssnew ¼{Route Distance, Number of Intersections, Primary
Road Ratio, Maximum Upslope, Maximum Downslope, Path
Size} (Fig. 6 (9)). As a result, 27 new model instances
(jGGj � jLLj � jsnewsnewj ¼ 3 � 9 � 1) were created. Similar to before,
model instances using only the attribute distances in the cal-
culation of distances between routes and bounded k had a
relatively high �r2. Moreover, most of their attributes were
statistically significantly estimated. Among them, the
experts decided to further inspect the model instance with
k ¼ 5� in the reasoning stage.

6.1.3 Reasoning Stage

The experts’ main purpose was to selectively explore trips
and OD pairs that largely contributed to the estimation result
(Task R1) of the active model instance (one with k ¼ 5�). To
this end, they startedwith the OD bubble plot. Before inspect-
ing the active model instance (one with k ¼ 5�), they wanted
to refine the instance first, and thus OD pairs with too low sil-
houette scores or estimation contribution scores (ECS) were
excluded. For this purpose, they brushed on OD pairs whose
silhouette scores greater than 0.2 in the OD bubble plot
(Fig. 8). Since it is difficult to judge ECS by its value, they
repeatedly brushed and checked the expected �r2 (Fig. 8 (1)).
Eventually, they adjusted the range of ECS that could make
the expected �r2 about 0.04; our experts said that a �r2 of about
0.04 is satisfactory. The blue gauge at the top of the ODbubble
plot showed that only about 55 percent ofODpairswith nega-
tive ECS were brushed. In other words, the other 45 percent
of OD pairs negatively contributing to the estimation result
were excluded in the selection and were not used for re-esti-
mation. After re-estimating the instance with the two filtering
conditions (F1 and F2 in Fig. 8) applied, they obtained a new
model instance with a �r2 of 0.041, which was considerably
higher than the previous one (Task R2; Fig. 8 (3)).

OD-Level Insights. The newly estimated model instance
also had a negative coefficient for Route Distance (Fig. 7 (1)).
This implied that riders tend to prefer short routes. To
understand this result further, the experts tried to find OD
pairs that largely contributed to this coefficient (Task R1).
They mapped the y-axis of the bubble plot to mean ECS for
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the Route Distance and brushed on OD pairs having rela-
tively large positive ECS (Fig. 7 (2)). Subsequently, they
began to explore the map and station views to understand
the characteristics of the brushed OD pairs. They soon real-
ized that the station with the largest traffic was located in a
university (Task E2; Fig. 7 (3)). Additionally, in the map
view, they identified that riders mainly rented bicycles at a
station in the university and travelled to nearby subway sta-
tions located around the university. Considering these flows
and a negative coefficient for Route Distance together, the
experts concluded that riders at the university (possibly stu-
dents) strongly prefer short routes and have very purpose-
ful movements. They believed that this example would
offer valuable insights for policy-makers to understand
public bicycle usage for supporting efficient rides.

After the university case, the experts began to explore
Yeouido, which is the place they were originally interested
in (Fig. 9A). They found high traffic in the (1), (2), and (3)
stations in Fig. 9A, which were very close to subway sta-
tions (Task E2). Since these OD flows on the map contrib-
uted to the negative coefficient of Route Distance, we could
infer that riders in this area strongly prefer short routes for
the last mile of riding (i.e., going to their office from the sub-
way station).

Road-Level Insights. The experts also analyzed riders’ pref-
erence for primary roads. Unlike Route Distance, Primary Road
Ratio had a positive coefficient. To find OD pairs that contrib-
uted to this result, the experts set mean ECS for the Primary
Road Ratio to the y-axis of the bubble plot and brushed OD
pairs having high ECS (Task R1). Then, they switched the
flowmap to the road heatmap to obtain road-level insights. In
the road heatmap, they found the traffic in Yeouido was high
(Task E2; Fig. 9B), and this consisted of the traffic of riders
who preferred primary roads. The experts commented that
riders who prefer primary roads could be good potential
users of bike lanes, considering that bike lanes are mainly
installed on primary roads. To identify the installation status
of bike lanes, they made the bike lane overlay visible in the
heatmap (Fig. 9C) and identified segments of primary roads
without bike lanes despite high traffic (Fig. 9 (4)). The experts
noted that these findings could guide the bike lane installation
process of policy-makers.

6.1.4 Model Comparison

In the analysis described above, the experts investigated
only one trip set at a time. This time, the experts created
three trip sets with different distances (Short, Medium, and
Long) and two trip sets with different days of the week
(Weekdays and Weekends). Then, they went through choice
set generation and model estimation for each trip set with
the hyperparameters used above.

Short- versus Medium- versus Long-Distance. The experts
created trip sets with three ranges of OD Distance based on
their domain knowledge: Short (½0; 2Þ km), Medium (½2; 5Þ
km), and Long (½5;1Þ km) (Fig. 10). The three models dif-
fered significantly in terms of �r2, and the Short trip set had
the highest �r2. The experts noted that trips with Long OD
distances were likely to be leisure activities. They usually
refer these trips whose purpose is not just to travel to a des-
tination as irrational trips, and it is more challenging to
model such trips according to the experts. Likewise, the
model instance for trips with Long distances had a large
number of insignificant coefficients.

Weekdays versus Weekends. According to �r2 and attribute
coefficients, Weekday trips showed more apparent choice
behavior thanWeekend trips. For all the attributes exceptMaxi-
mum Downslope, the magnitudes of coefficients were bigger
forWeekday trips. Like the coefficients, the �r2 ofWeekday trips

Fig. 9. (A) There are noticeable last mile flows from near the subway sta-
tions ((1), (2), and (3)) to the central commercial area. (B) The road heat-
map provides the control panel, and it allows users to adjust the
TrafficMax to manipulate the color scale of road segments. In addition, it
provides checkboxes to hide and show road segments with a certain
road type and overlay bike lanes. (C) After overlaying bike lanes (with
green segments), road segments with high traffic but no bike lane
installed were found.

Fig. 10. The model view with different trip sets. (A) shows the trip sets
with Short-, Medium-, and Long-distance. (B) presents the trip sets with
Weekdays andWeekends.
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was much higher than that of Weekend trips. The experts
inferred from these results that more riders are riding for lei-
sure on weekends, and these irrational rides might lower the
goodness-of-fit of the model for Weekend trips. Although the
magnitudes were different, the aforementioned attributes’
coefficients were equally significantly estimated (p < :01),
indicating that route choice behaviors of purposeful riders
are notmuch different for weekdays andweekends.

6.2 Domain Expert Interview

We conducted interviews with the domain experts after the
case study and summarize their feedback on each analysis
process.

Exploration Stage. The experts mentioned that overall they
could use the views in the exploration stage without diffi-
culties. P1 mentioned “Previously, I had to use several tools
to explore the data alternately, and it was burdensome to
manage the various target data with different filtering con-
ditions. However, I could interactive filter data in this sys-
tem while referring to the distribution of data attributes in
the OD view. Then, I could immediately check the filtering
results through visualizations such as the map or the station
view. Also, it was convenient to manage multiple data with
different filtering conditions on the list (i.e., the trip set
list).” Both P1 and P2 noted that they could gain insights for
modeling by identifying route attribute distributions. Espe-
cially, P2 said “It is important to establish a hypothesis
about the modeling result through a data exploration pro-
cess, but we had no specific way to derive a hypothesis
other than rule-of-thumb exploration with the existing tools
like GIS. One of the strengths of this system is that we could
derive clues about how riders perceive a particular route
attribute even before modeling by inspecting the bubble
plot and the nonparametric skew index. By using them with
the other visualizations, we could get various insights.”

Modeling Stage. P1 mentioned “During my everyday anal-
ysis, I build a lot ofmodels and compare them, but it has been
done mostly in a pairwise manner. Therefore, it was hard for
me to grasp the overview of multiple model instances. In this
system, I could identify which attributes show interesting
patterns, since it provides the overview along with the
detailed information of multiple instances collectively.” P2
commented about the interactions in the model instance
table: “Grouping, sorting, and hiding model instances are
simple but valuable. These interactions allow me to reveal
patterns that were difficult to discover by naively inspecting
a bunch of collectedmodel instances.”

Reasoning Stage. P1 commented about our reasoning pro-
cess that “Many analysts question whether the results are
sound even after modeling. To explain the model estimation
results, analysts often manually find route choices (i.e.,
trips) that well-follow the estimated coefficients. This sys-
tem addresses these questions as it allows us to investigate
model instances at the data level by delivering ECSs of OD
pairs and trips.” P2 mentioned the model re-estimation pro-
cess as follows: “We consider �r2 as the most important indi-
cator when evaluating the model. Therefore, to derive a
model with a high �r2, we have made efforts such as trying
out various hyperparameters in the modeling process or
applying various filtering conditions in the exploration pro-
cess. Instead, in this system, we could exploit ECS derived

from the modeling result to improve �r2 of the already esti-
mated model. Interactive filtering by ECS and re-estimation
process make us obtain a better model than before. Also, we
could compare the re-estimated models with existing ones
as the system seamlessly adds them in the model view.”

The experts also noted that there was room for improve-
ment. Currently, we represent only traffic or bike lane infor-
mation on the road segments in the map view, but they
suggested that it would be helpful to show information
such as slopes on the road segments.

7 DISCUSSION

This section discusses the lessons we learned while design-
ing RCMVis through regular meetings with our domain
experts. Hopefully, these lessons can help designers who
want to build an interactive visualization tool for route
choicemodeling.

A Three-Stage Analysis Framework. In the early stages of
design, the analysis procedure we originally planned con-
sisted of two steps: data exploration and then modeling.
However, we observed that the domain experts did no tend
to spend much time on data exploration before modeling.
That is, even without data exploration, most of them already
had filtering conditions of interest and promising sets of
hyperparameters formodeling inmind. Indeed, their primary
strategywas to estimate allmodelswith their desired configu-
rations first and choose the model to be further analyzed.
Once they selected an impressivemodel instance, they started
to inspect the model’s characteristics, OD pairs, and trips.
Based on this observation, we decided to add a reasoning
stage at the end of the process to support rationalization
aligned with the tasks that the experts perform in practice. In
addition, the experts also emphasized that the exploration
stage is necessary when analyzing unseen data, even though
this stage is often skippedwhen analyzing familiar data.

We designed the interface of each stage as a separate tab.
This design intuitively shows what stage users are currently
working on and allows users to explicitly move on to the
stage they want. In the initial design, users had to perform
exploration and reasoning in one integrated interface, as we
configured the interface based on the visualization target
rather than the analysis stage. The types of data visualized
in the exploration and reasoning stages (e.g., OD pairs,
trips, and stations) are almost identical. However, the explo-
ration stage explores a trip set, whereas the reasoning stage
is for exploring a model instance and the derived model sta-
tistics. To support both stages in a single interface, the inter-
face had to become complex. In addition, the domain
experts reported that it was somewhat confusing because
the stage transition was implicit. For this reason, we decided
to organize the interface according to each analysis stage.

View OD Pair as the Context of Route Choices. When analyz-
ing trips, it is necessary to know which OD pair they belong
to. An OD pair can serve as an important context for riders
when they make route choices. A route choice refers to deter-
mining a route among many alternatives in a choice set for a
specific ODpair. Since a choice set can be given differently for
each OD pair, riders’ route choices depend highly on the
given OD pair. In other words, even if two riders choose
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similar routes, their choices could be interpreted differently in
themodeling context if their ODpairs are different.

In the initial stage of the design process, we wanted to
visualize trips effectively, but we overlooked the need to
consider OD pairs together. We collectively visualized all
trips using a multi-dimensional visualization (like parallel
coordinates) and called it the trip view. However, we
received negative feedback from our domain experts when
we showed the trip view. They commented that, in RCM
analysis, it is necessary to identify meanings of trips within
their OD pairs rather than analyzing the individual trip.
Additionally, patterns revealed with all trips shown at once
do not mean much except for the aggregated departure
time or geographic distribution (i.e., the time bar charts and
road heatmap). As a result, we decided to revise the trip
view and came up with the current design of the OD-Trip
view to represent trips within each OD pair.

Limitations and Future Work. In this section, we would like
to mention two limitations of our work. First, the exploration
stage still depends on users’ own exploration strategies rather
than providing a more systematic way for exploration. The
current exploration stage is designed to help users under-
stand the overall distribution of a movement dataset. Users
can discover insights that can be directly helpful in themodel-
ing stage, especially hyperparameter tuning in this explora-
tion process. However, discovering such insights relies on
users’ own exploration strategy rather than a systematic pro-
cess. By providing amore systematic data exploration process
for route choicemodeling, we can help less experienced users
in the domain perform betterwith RCMVis.

The second limitation is related to computational effi-
ciency. The computation time of choice set generation and
model estimation is several minutes when the number of
OD pairs in a trip set exceeds about 10 K. In such a case, an
analysis may be blocked until the computation is done. Cur-
rently, RCMVis caches all results of the two processes per-
formed by users. Our domain experts often analyze the
same data multiple times, so this caching alone was consid-
ered satisfactory by them, but we do not think this is suffi-
cient enough in general. Instead, we may help users make
quick judgments before the full result is ready by progres-
sively showing the intermediate results. However, further
research is necessary to understand which intermediate
results might be useful to users.

8 CONCLUSION

We present RCMVis, a visual analytics system for interac-
tively supporting route choice modeling. Through close col-
laboration with the domain experts, we identified the
problems they faced in their analysis tasks. Based on such
findings, we suggest a three-stage interactive modeling
framework to streamline the process of RCM analysis. We
also designed an interactive visualization system to effec-
tively support the three-stage modeling framework. Through
a case study using a real-world bicycle dataset, the experts
could make meaningful discoveries about the data and the
models they developed, including geographical distributions
of traffic, the hyperparameter space of the models, and data-
level insights to help interpret models. Furthermore, through
expert interviews, we showed the efficacy of each analysis

stage of RCMVis. We believe that our analysis framework
and visual designs will not only be helpful to RCM, but can
also be extended to other related problems, such as bike reba-
lancing and bike lane planning.
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