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ABSTRACT Typing on a smartwatch is challenging because of the fat-finger problem. Rising to the
challenge, we present a soft keyboard for ultrasmall touch screen devices with efficient visual feedback
integrated with autocorrection and prediction techniques. After exploring the design space to support
efficient typing on smartwatches, we designed a novel and space-saving text entry interface based on an in
situ decoder and prediction function that can run in real-time on a smartwatch such as LG Watch Style. We
outlined the details implemented through performance optimization techniques and released interface code,
APIs, and libraries as open source. We examined the design decisions with the simulations and studied the
visual feedback methods in terms of performance and user preferences. The experiment showed that users
could type more accurately and quickly on the target device with our best-performing visual feedback design
and implementation. The simulation result showed that the single word suggestion could yield a sufficiently
high hit ratio using the optimized word suggestion algorithm.

INDEX TERMS Consumer electronics, human computer interaction, natural language processing, system
analysis and design.

I. INTRODUCTION

WHEN using a smartwatch, it is often necessary to enter
text, such as a quick reply to a text message or adding

a reminder or an event. Commercial smartwatches support
various methods such as voice recognition, predefined sen-
tences for replying to a text message, and gestures for sharing
messages with others. Even though these methods are useful
in some cases, they also have pros and cons. For example,
voice typing is not comfortable in public areas for some peo-
ple. Commercial platforms began to support soft keyboards
to overcome the limitations(e.g., Google Keyboard-Gboard
on Android Wear 2.0 [12]).

In the HCI field, several studies have been conducted on
text entry with a smartwatch. To accurately select a target
key on a small touchscreen, various interaction techniques
have been proposed that can be classified as multistep or
indirect selection techniques [1], [3]–[6] while preserving
the familiar QWERTY layout. Another way to overcome the
fat-finger problem [13] when typing is to use a statistical
decoder to select target keys probabilistically [8], [9], [11],

[12]. Statistical decoder-based text entry opened up oppor-
tunities, demonstrating the surprisingly fast text entry speed
with acceptable error rates on tiny touchscreens [8], [9],
[11]. Most previous research has focused on improving the
accuracy of decoders to see the performance improvement
on soft keyboards of different sizes.

Besides designing a good statistical decoder, it is essential
to design effective interaction techniques working with the
decoder. Vertanen et al. showed that typing performance can
vary with the design choices for possible interactions on the
decoder-based smartwatch soft keyboard [11]. However, little
attention has been paid to the design and evaluation of visual
feedback techniques, such as displaying input characters for
statistical decoder-based text entry on ultrasmall touchscreen
devices. To our best knowledge, there has been no empirical
evaluation on the effectiveness of visual feedback techniques
for displaying typed input characters on soft keyboards with
a statistical decoder. For the word suggestion design, little is
known about the evaluation of word prediction when using
N-gram language models, whereas the feature is commonly
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TABLE 1: A summary of typing performance on ultrasmall devices. Error rates are collected based on character error rate
(CER), and if total error rate (TER) is reported, it is addressed separately in parentheses.

Name WPM Error Rate (%) Phrase Set Layout Size (mm2)

ZoomBoard [1] 7.6–9.3 0.1 MacKenzie [2] Qwerty 17 × 6
SwipeBoard [3] 9.1–19.6 — (TER = 13.3) 4-letter words Qwerty 12 × 12
SplitBoard [4] 14.8 0.5 (TER = 7.5) MacKenzie Qwerty 16 × 6
Zshift [5] 9.1 0.9 MacKenzie Qwerty 32 (wide)
DriftBoard [6] 8.77 1.13 MacKenzie Qwerty 28 × 14
COMPASS [7] 9.3–12.5 0.0 MacKenzie Circle 31 (diameter)
WatchWriter [8] 22.0 1.5 MacKenzie Qwerty 33 (wide)
VelociTap [9] 34.9 10.7 Enron [10] Qwerty 25 × 16
VelociWatch [11] 17.3 3.0 Twitter IV+OOV [11] Qwerty 29 × 29
TwoSlot [11] 20.6 3.0 Twitter IV+OOV Qwerty 29 × 29
VHA SHADE (ours) 25.3 0.9 Enron Qwerty 30 (wide)

used on mobile device.
When it comes to devices with an ultrasmall screen, the

input channel is very noisy due to the fat finger problem. A
robust statistical autocorrection mechanism can compensate
for the uncertainty of the input channel. With a robust au-
tocorrection mechanism, the wrong character input can be
corrected without using the back key when users continue
to enter the following characters correctly. In this regard, we
design a visual feedback method for character prediction to
help the user understand the decoder’s corrective behavior.

In this paper, we explore the previous research in the
design space of a soft keyboard on an ultrasmall touchscreen
device, and we present a novel QWERTY-based soft key-
board named Visual Hints for Accurate typing (VHA) with a
state-of-the-art statistical decoder implementation and visual
feedback for the decoded output shown in Fig. 1. Through
an iterative design process, with the user study and the
simulations, we select the most effective visual feedback and
interaction for typing. In the user study, we evaluate potential
visual feedback methods for a typed character. The result
shows that users can type most precisely and quickly with
the color-coded, decoded-output feedback (SHADE) shown
in Fig. 3b. The character error rate (CER) is very low at 0.9%
while preserving the fast typing speed of 25.3 wpm on the 30
mm wide smartwatch as shown in Table 1.

The main contribution of this paper consists of the fol-
lowing. First, we examine the design space of text entry for
smartwatches and propose a space-efficient virtual keyboard
layout design with the essential interactions. Second, we
show how a powerful statistical decoder and predictor can run
in real-time on embedded devices. We use novel approaches
such as context-aware error model and augmented trie (pre-
fix tree) data structure to optimize accuracy and runtime
performance. Third, we design and implement an API that
can easily use the statistical decoder and predictor. Until
now, user interaction studies about the statistical decoder
and predictor have been difficult because not enough code
has been publically available. We share our implementation,
including the API and libraries, on GitHub [14] to help
other researchers investigate design spaces and interactions.
Fourth, we design and implement prediction functions opti-
mized for smartwatches based on the observation that single-

word prediction based on an N-gram language model can
compensate for hit ratio and keystroke reduction compared to
multi-word prediction based on a unigram language model.
Finally, we design visual feedback methods for the decoded
output with character- and word-level decoders for soft key-
boards. We compared four feedback methods in a controlled
user study, and the result shows that our proposed method-
SHADE enables users to type more accurately and quickly
without preference degradation.

II. RELATED WORK
We reviewed previous studies and classified them system-
atically to make a design space for the soft keyboard on
the smartwatch. We explore the design space along two
dimensions. One is the operation to support, and the other
is the execution level. For the operations, we categorize them
into visual feedback method for the typed text, suggestion
method, and typo recovery. For the execution level, there
are possible three levels—character, word, and sentence.
Table 2 shows the design space for typing interactions on
ultrasmall devices, mostly using a touchscreen-based smart-
watch. While exploring the design space, we also formulate
our research questions in the context of the previous related
work.

A. INTERACTIONS AND VISUAL FEEDBACKS FOR
TYPING
For the visual feedback of typing, two approaches are possi-
ble. One is to display an accurately selected target, and the
other is to show a statistically decoded output considering
touch inaccuracy because of the small touchscreen size.

To support accurate tapping on the target key on a small
screen, several approaches have been proposed in previous
studies. First, multistep selection approaches are available.
ZoomBoard [1] and SplitBoard [4] are based on zooming
and tapping approaches. SwipeBoard [3] uses two succes-
sive swipe gestures to select a target key in the QWERTY
keyboard. Second, indirect selection can be another option.
Zshift [5] uses a callout-based shift-pointing technique, and
DriftBoard [6] uses a panning-based technique that utilizes
a fixed cursor point with a movable QWERTY layout. Back-
of-device [19] and tilt-based gesture [20] can be other options

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3081173, IEEE Access

Min, Seo: Statistical Typing on Ultrasmall Touch Screens for IEEE ACCESS

TABLE 2: Design space for typing interaction on ultrasmall devices.

Execution level
Operations Visual feedback of typing Suggestions Typo recoverywith selected target with decoded output

Characters Multi-step selection
ZoomBoard (Oney et al, 2013) [1]
SwipeBoard (Chen et al., 2014) [3]
SplitBoard (Hong et al., 2015) [4]

Indirect selection
Zshift (Leiva et al., 2015) [5]
DriftBoard (Shibata et al., 2016) [6]

Ambiguous selection
COMPASS (Yi et al., 2017) [7]

Touch (Offset) modeling
WatchWriter (Gordon et al.,
2016) [8]
Gboard for Android Wear [12]

Noisy channel model
VelociTap (Vertanen et al.,
2015) [9]
VelociWatch (Vertanen et al.,
2019) [11]
TwoSlot (Vertanen et al.,
2019) [11]
VHA (ours)

Based on user’s conceptual
model of decoder
ForceType (Weir et al.,
2014) [15]

For visual hint on likelihood
COMPASS
VHA

Deletion of the last character
ZoomBoard
SwipeBoard
DriftBoard

Undo latest decoding
VelociTap
VelociWatch

Words Noisy channel model
VelociTap
VelociWatch
TwoSlot
Gboard for Android Wear
VHA

For correction & prediction
WatchWriter
Gboard for Android Wear
VelociWatch
TwoSlot
VHA

Editing on character-level.
Gboard for Android Wear

Editng on word-level.
WatchWriter
TwoSlot
VHA

Sentences Predefined Sentences
Microsoft Band [16]
Apple Watch [17]
Android Wear [18]

Noisy channel model
VelociTap
VelociWatch
TwoSlot
Microsoft Band Keyboard
VHA

For selecting words
Microsoft Band Keyboard

For predicted replies
on
Apple Watch
Android Wear

if additional input channels are available. Third, it is also
possible to allow an ambiguous selection by assigning multi-
ple characters on a single key. COMPASS [7] uses multiple
cursors on a circular keyboard to select keys by rotating the
bezel. DualKey [21] allocates two characters in a key and
determines the target key by a finger-identification method.
Most commercial platforms, such as Microsoft Band [16],
Apple Watch [17], and Google Android Wear [18], support
predefined sentence selection for messaging applications in
addition to typing in character units. For example, Apple
watch supports user-defined messages in addition to default
messages such as "What’s up?", "I’m on my way.".

The statistical decoder-based text-input method [22] has
strong potential because it has shown a much faster input
speed than multi- or indirect-selection-based techniques on
smartwatch-sized screens, as shown in Table 1. VelociTap [9]
reported 34.9 wpm on a 25 mm wide smartwatch-sized
keyboard at a 10.7 % character error rate (CER), and Watch-
Writer [8] reported 22.0 wpm with a CER close to 1.5%.

At the character input level, text entries can use touch
models to select characters for display. For example, Weir et
al. [15] used the Gaussian process regression approach [23]
to make a personalized touch model, and Yi et al. [24]
modeled touch offset and its variation with bivariate Gaussian
distribution [22], [25] on a smartwatch. Based on these touch
models, decoder-based text entries, such as WatchWriter and
Gboard for Android Wear, can display characters on the
screen as visual feedback for each touch input. In addition to
this touch model, VelociTap has constructed Noisy Channel
Model [26], [27] that uses both a touch model and a char-
acter language model to decode touch input to the displayed

characters.
When the touch input is very uncertain, displaying selected

characters on the screen can frustrate users, as shown in
Fig. 3d. As far as we know, there have been few comparative
user studies to evaluate different visual feedback methods for
selected and decoded characters on ultrasmall screen devices.
So our first research question (Q1) is as follows. What is
the most effective visual feedback method for displaying
typed characters on an ultrasmall soft keyboard in terms
of typing speed, accuracy, and user preferences?

At the word input level, there are two types of displaying
decoded words. Most decoder-aided soft keyboards on mo-
bile devices, including WatchWriter and Gboard for Android
Wear, display the decoded word in the suggestion bar. Veloc-
iTap and VelociWatch directly display the decoded word in
the textbox using autocorrection.

At the sentence input level, VelociTap supports sentence-
level decoding to modify words in a sentence when the
user finishes typing them. The Microsoft Band keyboard
displays sentence-level input feedback on a separated full-
screen mode that maximizes the size of the keyboard layout
on the screen.

B. INTERACTIONS FOR SUGGESTIONS
Interactions for suggestions are familiar to most users. For
example, many mobile text entries support word suggestions
using a suggestion bar. In some situations, character-level
interactions are possible. ForceType [15] designs force-based
interactions based on the user’s conceptual model about the
decoder to adjust the autocorrection threshold dynamically.
COMPASS uses a visual hint that contains the likelihood of
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each character; It allocates a visually salient color on the
character keys according to their probability. As a result,
it guides users to focus on the possible characters in the
dictionary.

There are two types of word-level suggestion methods:
correction based on a decoder and prediction (i.e., comple-
tion) using a language model [8]. Interactions for sentence-
level suggestions are also possible. The Microsoft Band
keyboard allows users to modify decoded sentences by touch-
ing their content. Commercial wearable platforms, includ-
ing Microsoft Band, Apple Watch, and Google Android
Wear, also support suggesting predefined sentences for quick
replies [16]–[18].

Text prediction is one of the most widely used techniques
to enhance the communication rate in mobile computing
as well as in augmentative and alternative communication
(AAC) [28]. Quinn and Zhai [29] studied the effect of word
prediction in a mobile touchscreen device with a separate
suggestion bar. Although the number of keyboard actions for
text input decreased and the suggestion bar was subjectively
favored, it was reported that the average time for text input
was degraded because of additional costs for the users’ atten-
tion to the suggestion bar and decision making. However, the
N-gram language model could improve the accuracy of word
prediction, which has a positive correlation with the average
hit ratio of word prediction. So our second research question
(Q2) is as follows. How much can the N-gram language
model raise the hit ratio of word prediction? Is it enough
to replace the multi-words selection with a single-word
one?

C. INTERACTIONS ON TYPO RECOVERY
A back key is necessary because typing errors are inevitable.
However, due to the high cost of adjusting the typing error,
fixing a typo is an undesirable action for users [30]. It has
been a good research topic to lessen the cost. For example,
there was a study to facilitate the correction of overlooked
errors using the smart restorable backspace technique [31].
When users deleted remaining words to correct a typo in
the middle of a sentence, the technique helps users correct
overlooked typos by suggesting the remaining words not to
retype them.

When it comes to statistical decoder-driven text entry, the
role of the back key is more than just deleting the target
element because it needs to restore the previous status to
update the decoded output along with the word suggestion
list into the last stage. Moreover, allowing cursor offset
movement in any location offers a greater number of design
choices to consider, for example, whether word correction
and prediction are turned on or off.

In this regard, ZoomBoard, SwipeBoard, and DriftBoard,
which do not depend on a decoder, use a back key for
deleting the last input character. In contrast, VelociTap and
VelociWatch use a back key to undo the previous character
input. Gboard for Android Wear has more flexible operations
that allow not only undoing the last input character but

also moving cursors without turning off word correction and
prediction. Meanwhile, WatchWriter and TwoSlot, a simpler
version of VelociWatch, intentionally prevents character-by-
character operations to enable word-level decoding. Thus, the
back key in WatchWriter and TwoSlot erase words on a word-
by-word basis.

In the case of typing on the soft keyboard using the
statistical decoder, users can correct typos in two ways. The
first way is to use the back key to clear and retype the word
as soon as possible. The second way is to keep typing, even
if users find a typo, and let the soft keyboard correct it using
the autocorrection function.

III. DESIGN
As shown in Fig. 1, we designed and implemented the VHA
soft keyboard on the Android platform to find answers to our
research questions.

A. LAYOUT AND INTERACTION DESIGN
Fig. 2 shows the layout and interaction design with gaze
points highlighted. We used the standard QWERTY lay-
out, which is familiar to most mobile-device users. Because
screen assets are limited in ultrasmall screen devices, design
decisions focus on minimizing the screen space required for
the QWERTY layout and control keys, ensuring that the
remaining screen area for information display is as large
as possible. On top of the QWERTY keyboard, an input
textbox is located showing the predicted word as well as
decoded characters. Above it, the presentation textbox, which
has a gray background, is located to show the presented
sentence for the user experiment. On the right side of these
two textboxes, we located a button to indicate the end of the
sentence, similar to the enter key.

Whereas the presentation box is used for the user exper-
iment to present a given sentence in the implementation,
the valuable space can be used for other purposes also. For
example, we can suggest a predefined message based on
context or present useful information to aid the user’s task.

During the VHA soft keyboard development, we observed
that the space bar and the back key could be accidentally
selected due to the fat finger problem when they were as-
signed to touch keys. Similarly, Vertanen et al. also addressed
that the spacebar at the bottom of the keyboard would cause
accuracy problems due to size limits on their velociWatch
design [11]. This leads to user frustration and a noticeable
performance degradation because, in the decoder-based soft
keyboard, the role of the space bar or back key is not only to
add spaces or delete characters but also to perform or undo
decoding, respectively. Therefore, we decided to separate
the input channels between the alphabet and control keys.
We mapped control keys to different input channels—swipe
gestures like ZoomBoard [1], VelociTap [9], Swype [32],
and velociWatch [11]: (1) swipe-right for space bar, (2)
swipe-left for back key, (3) swipe-down for word completion,
and (4) swipe-up reserved for future usage (e.g., turn-off/on
autocorrection).
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(a) (b) (c) (d) (e)

FIGURE 1: A storyboard of our VHA design when typing a sentence. (a) The user touched the t key on a QWERTY keyboard.
The h, o keys are highlighted to indicate that they are the most expected next key candidates in the current input sequence.
(b) The user touched the "omptto" keys, but the autocorrected characters, "omorro" are displayed. The corrected characters
are shown in gray color, and the predicted word "tomorrow" is displayed with light-gray color on the "w." (c) After touching
the w key, the user finished typing "tomorrow" with the right-swipe gesture. (d) The user touched the "kf" keys, and "of" was
displayed with character correction. (e) After the swiping to the right, the corrected word "if" was shown (aided by a word
corrector), and the user continued to type the next word. A predicted word, "possible," was shown.

(a) (b)

FIGURE 2: The virtual keyboard layout is shown in the circular smartwatch; (a) our soft keyboard (VHA) and (b) Google
Keyboard (Gboard) on Android Wear 2.0. Possible gaze points to enter a word are depicted with a yellow eye icon. The
VHA keyboard on the left shows additional information, such as a presented phrase for the user experiments in the gray textbox
located at the top. On the right side, there is the end button, which is used to finish entering a phrase. The input textbox is located
below the gray textbox showing the input words as well as a predicted word. The cursor is located as a blinking underline at
the end of the actual input text. At the bottom of the soft keyboard, there is a QWERTY layout to enter characters. Bolded
yellow keys are predicted character candidates for the next input. The blue arrow means swiping gestures. The left arrow means
swipe-left gesture acting as a back key, and the right arrow means swipe-right gesture acting as a spacebar, and the down arrow
means swipe-down gesture triggering a word completion. The Gboard on the right has no area to show information at the top.
Instead, the input textbox is located at the top showing last input words, and at the end of the input textbox, there is a blinking
cursor as a vertical bar. On the right side of the input textbox, there is a rounded button to finish entering a sentence. Below the
input textbox, the suggestion bar shows suggested words for fixing or predictive typing. Users can see more suggested words
by touching the downward arrow button. Below the input textbox, the QWERTY layout is to shown to enter characters on top
of the special keys for mode change, spacebar, and back key.

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3081173, IEEE Access

Min, Seo: Statistical Typing on Ultrasmall Touch Screens for IEEE ACCESS

The space bar key has two functions. First, it acts as a word
delimiter to trigger autocorrection with a word-level decoder,
and second, it inserts the space character after the decoded
word.

We initially decided to use the back key (swipe-left ges-
ture) for an undo operation. When users swipe-left, the appli-
cation discards the latest key and goes back to the previous
state. For example, when the last input was a user touch on an
alphabet key, it just discards the last character-level decoding
output and rolls back to the sequence of characters that were
previously returned by the character-level decoder. If the last
input was a swipe-right gesture for entering a blank space,
the system clears the inserted space; at the same time, it
cancels the word-level decoding output and replaces it with
the output from the underlying character-level decoder.

However, when users type a word and see an unintended
sequence of characters entered, they have two options: to
undo it with the swipe-left gesture or to continue typing
the next character carefully when they think the system can
modify the input correctly in the end. During the pilot study,
we observed that some users tend to use the swipe-left ges-
ture frequently even when the decoder can eventually correct
the input sequence. Moreover, if an error occurs at the end
of entering a word, rewriting the entire word is often more
efficient than undoing a few characters. The previous study
by Vertanen et al. also showed that the TwoSlot method, a
simpler version of VelociWatch, which blocked the deletion
of individual characters like WatchWriter, outperformed Ve-
lociWatch that enables character-level removal [11]. There-
fore, we decided to get rid of character-decoder-level undo
operations in our system. Instead, our system clears out
all the decoded character sequences that came from the
character-level decoder and resets the decoder to make a user
enter the correct word again.

For word completion, users can select the suggested word
with a swipe-down gesture when only one word is suggested.
We also had tested direct touching gesture on the output
textbox in place of the swipe-down gesture, but we observed
that there was no significant improvement in typing speed
and error rate. We decided to use the swipe-down gesture
instead of touching the textbox, considering the consistency
for the other control events.

B. VISUAL FEEDBACK FOR DECODED CHARACTERS
We explored four possible design choices for displaying input
text, except for trivial cases such as displaying "*" for each
key touch. Fig. 3 shows the four design choices. The first
design choice is to display the decoded characters instead
of the nearest keys based on the touch model (Fig. 3a).
We expected that displaying decoded characters is helpful
on high-ambiguity input channels to prevent unnecessary
undo operations when the decoder keeps track of the user’s
intentions well. The second is to add color-coding to the first
method to provide additional information about the decoded
output. We assigned black if the decoded character is the
same as the touched key. Other decoded characters (not equal

to the touched key) are grayed out (Fig. 3b). We expected that
color-coded information would help users build a more pre-
cise mental model of our decoder. The third is to use "*" for
the decoded character that is not the same as the touched key
instead of graying it out (Fig. 3c). With this design option,
we wanted to investigate if the user could trust the decoder
more with less information provided. We also wanted to
know the relationship between users’ cognitive burden and
the level of details in the information displayed. The last
option is to display the touched key with a touch model,
like WatchWriter, Gboard for Android Wear, and most soft
keyboards on mobile devices (Fig. 3d). Key selection can
be made in several ways, for example, by touching within
the visual boundary of a key or by choosing the nearest key
to the point of the touch. We used the bivariate Gaussian
distribution as a touch model, using the Bayesian Touch
Distance metric to decide the intended key [25].

We ran a controlled user study experiment to make the best
design decision on visual feedback for decoded characters,
answering Q1 in section V.

C. VISUAL CUE FOR CHARACTER PREDICTION

We designed a visual cue to highlight the probable next input
characters on a QWERTY keyboard layout. The probable
characters are selected based on the character-level prediction
algorithm that is described in the following section IV-D. Al-
though character-based prediction does not help in shortening
keystrokes per character (KSPC), we found two benefits
during the pilot study. First, it can help users type characters
more confidently because the visual cues could facilitate
users’ recognizing how well the decoders predict the intended
words. Second, it would be able to serve as a guide to find
target keys for users who are not familiar with the small
QWERTY layout. For this reason, we made the visual cue
salient to users by using distinct size, boldness, and hue (see
Fig. 2a). Yi et al. also reported users’ preference for the visual
hint for character selection on their rotational keyboard on
non-touch smartwatches [7].

D. WORD PREDICTION

Because screen asset on ultrasmall screen device is very
limited, cost-benefit analysis is needed to decide a proper
number of suggested words. Quinn and Zhai reported that
increasing the assertiveness of suggestions for text entry
reduced KSPC and was preferred by users whereas it lowered
the average entry rate. They defined the assertiveness as the
tendency for an interface to present itself. With extraverted
assertiveness, the interface suggests every possible word.
With introverted assertiveness, the interface never suggests
words. With ambiverted assertiveness, suggestion results are
gated by a probability threshold to suggest only high proba-
bility words [29]. To suggest words, they used a prediction
model based on the frequency information of words (i.e.,
unigram language model) in a dictionary. They discussed that
N-gram word prediction and input error correction could save
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(a) DECODED (b) SHADE (c) STAR (d) TOUCH

FIGURE 3: When a user tried to type "today", but actually typed "yofay", conditions that can display transcribed characters on
the screen are shown as follows: (a) the decoded characters only (DECODED), (b) the decoded characters with color-coding
to identify nearest characters from the touchpoints (SHADE), and (c) "*" for decoded characters that are not nearest to the
touchpoints (STAR), (d) the nearest characters from the touchpoints using the Bayesian Touch Distance metric (TOUCH).

more keystrokes with similar costs of attending, deciding,
and selecting the suggested words.

As the suggestion interface requires additional screen
space and time to perform, we designed a new interface for
word suggestion to minimize the space and time requirement
while trying to preserve most benefits. Fig. 1e shows our
interface for word suggestion. According to the simulation
result on section VI-B, we decide to suggest only the most
probable word at a time. When users start typing a word,
the suggested word appears in the input text box if the lan-
guage model reports a higher probability than the predefined
threshold for the word. The suggested word is located just
after the cursor. It is in gray to indicate that the user has not
yet entered it. We used 4-gram word prediction to raise the
hit ratio of the suggested words considering the performance
enhancement against the increased model size. As a result,
the interface does not require additional user interface com-
ponents for displaying and selecting the suggested words.
We implemented two interactions for users’ selection of the
suggested word—a direct tap on the output textbox and a
swipe-down gesture. Then we compared the two in terms
of typing speed and error rate, and there was no significant
difference between them. Vertanen et al. also compared tap
and swipe gestures on their VelociWatch implementation,
and they also reported that there was no significant difference
between tap and swipe. Therefore, we decided to use the
latter as the selection interaction, considering that we already
used swipe gestures for the back and space key.

IV. IMPLEMENTATION
In this section, we explain the implementation details of our
VHA method. Most interface components are based on Java,
whereas decoding and prediction were implemented in C++
with the Android native development kit [33] to meet the real-
time constraints of the task.

A. LANGUAGE MODEL
To construct a language model, we collected 103 million
(103,790,367) tweets with the Twitter streaming API [34]

because Twitter is known as a good source for a large number
of conversational phrases [35]. We filtered out retweets,
and then classified the tweets into personal or nonpersonal
tweets by using a Naïve Bayesian classifier. We manually
labeled 400 tweets to train the classifier. The classifier, which
showed 92% accuracy, used both content features and context
features. As the content features, we used the top 100 most
common words, number of URLs, number of hashtags, num-
ber of users mentioned, number of symbols. As the context
features, we used the number of followers, the number of
friends, favorited, geo-tagged, and timezone. Finally, auto-
matically transferred URLs that start with ”http://t.co” were
deleted from the text. Exactly 36,657,728 tweets contributed
to building our domain corpus with 500,090,467 words.

Based on the corpus, we generated a word-level 4-gram
model and a character-level 7-gram model using the SRI
Language Modeling (SRILM) toolkit [36]. For the word
model, Moby’s word list [37] was used as a vocabulary.
Witten-Bell smoothing [38], which is known to be more
robust than modified Kneser-Ney [39] for entropy-based
downsizing [40], was used to build up the models. After
downsizing the models using entropy pruning provided by
SRILM, we used KenLM [41] on the target device to query
language models in real-time.

B. ERROR MODEL
To make a high-quality word decoder (corrector), we used
both misspelling and touch models. We gathered mis-
spelling data, which contains both cognitive and typing
errors from the following four sources: (1) Wikipedia’s
lists of common misspellings (3,246 words; 4,497 mis-
spellings) [42], (2) Roger’s Misspellings (7,841 words;
39,709 misspellings) [43], (3) Aspell Misspellings (466
words, 547 misspellings) [44], and (4) MSR misspellings
(10,521 words; 31,180 misspellings) [45].

Based on the collected data, we built a context-aware
confusion matrix with modified Kneser-Ney smoothing [39].
We used the previous two characters before a typo as a
context. We also calculated the distribution of error locations
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within the words from the collected data, as in the Baba and
Suzuki’s study [45]. We normalized the CER to an average
of 2% [46].

For touch modeling, we used a dual Gaussian distribution
model that can reliably predict touch accuracy along with
target size [47].

C. DECODER

Algorithm 1: Decoding based on the noisy channel
model
Require: context C of n elements; input V; return size K

1: results← []
2: candidates← GenerateDecodeCandidates(V )
3: for all W in candidates do
4: LMProbability ← QueryLanguageModel(C,W )
5: EMProbability ← QueryErrorModel(C, V,W )
6: append (W,EMProbability ∗ LMProbabilityλ) to

results
7: end for
8: sort results by probability in decreasing order
9: return results[: K]

We used the noisy channel model to make decoders [26],
[27], which are used for character-, word-, and sentence-
level correction for our VHA implementation. Using the
Bay’s theorem, we can estimate the intended correction w,
from a typo v by finding the correction w that maximizes
Pr(w) × Pr(v|w). We calculated the prior Pr(w) and the
channel probability (conditional probability) Pr(v|w) from
the language model and the error model, respectively. As
Brill and Moore reported that channel and language models
directly affect the quality of the decoder [48], we constructed
the language and error models elaborately as described in
section IV-A and IV-B.

Algorithm 1 shows the decoding procedure. The char-
acter decoder generated all substitution (including itself),
insertion, and deletion cases, regardless of the given input
V (line 2). For each case, it calculated source probability
(line 4) and channel probability (line 5) with the language
model and error model, respectively. We weighted the source
probability with λ as 1.2, which is empirically determined
from our simulation (line 6). To determine the parameter λ,
we implemented the word corrector along to this decoder
algorithm based on the language and error models that are
explained in the previous sections. We used selected sen-
tences from Twitter and generated typos based on the error
model. With these generated input sentences, we simulated
word correction, and the best-performed value was selected.

Generating candidate words for word decoding is also
important to improve the decoder quality. Because of the
high uncertainty of the input channel, i.e., finger touch on
the small screen, many typos exceeded the edit distance of
two. However, even with the edit distance of two, if the
length of a word is long, the number of candidates can be too

large to process in real-time. Thus, we used beam pruning to
control the number of candidates; for each character input,
we maintained a string list that contains up to 50 candidates
made by the character decoder with the previous list. When
the user starts decoding a word using a swipe-right gesture,
the word-level decoder will generate more candidate words
from the strings that are generated by the character-level
decoder in the candidate list: (1) every word in the vocabulary
that has edit distance of one from the strings in the list, (2)
every word in the vocabulary that has the same phonetic
index as the input sequence using Double Metaphone [49].
The candidate words generated through this process can
cover more than two edit distance, and thus it can help us
produce proper decoding results without compromising time
and accuracy.

D. PREDICTION

Algorithm 2: Prediction based on language model
Require: context C of n elements; prefix P; return size K

1: results← []
2: candidates← GeneratePredictCandidates(P )
3: for all W in candidates do
4: probability ← QueryLanguageModel(C,P )
5: append (W,probability) to results
6: end for
7: sort results by probability in decreasing order
8: return results[: K]

The prediction procedure is described in Algorithm 2.
For character prediction, prediction candidates (line 2) are
generated just by listing the entire alphabet. Given that the
number of alphabets (26) is small, there is no performance
problem in forecasting. However, the number of candidates
for word prediction is the size of the whole vocabulary in
the worst case. To make the prediction run in real-time, we
constructed a modified trie (prefix tree) data structure from
the dictionary. Each node additionally keeps the highest rank
of its subtree to prune the tree by order of words easily. This
allows us to limit the maximum number of words by the
rank of the word frequency on the vocabulary to consider
at runtime. Based on the simulation result in section VI-A,
we selected the number of candidate words as 1,000, which
achieves useful keystrokes saving ratio while not harming the
real-time constraint.

V. EXPERIMENT1: USER STUDY FOR VISUAL
FEEDBACK OF DECODING
There are a few possible design alternatives to display char-
acters in the input textbox when users type a sentence into
the smartwatch. In order to answer the research question Q1,
that is, to make a design decision about the visual feedback
of input characters, we conducted a user study to compare
the performance, perceived workload, and user preference of
these designs.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3081173, IEEE Access

Min, Seo: Statistical Typing on Ultrasmall Touch Screens for IEEE ACCESS

FIGURE 4: The participants wore the smartwatch on their
wrists to use the finger of their dominant hand.

A. APPARATUS AND PARTICIPANTS
The first study was performed on the 3.05 cm (1.2 in) LG
Watch Style (LG-W270) [50]. The device supports a circular
display with a resolution of 320 × 320. We used our VHA
soft keyboard application running on the Android Wear OS
2.0 with Snapdragon Wear 2100 [51] AP (application proces-
sor) and 512 MB of RAM.

We recruited 12 participants (6 male, 6 female) on our
campus. Their ages ranged from 23 to 33 years (mean =
25.8, sd = 3.1). They have used smartphones for over a year
and are accustomed to reading and typing in English. Each
participant was rewarded with approximately US $10.

B. PROCEDURE
After explaining the goals of the experiment, we asked the
participants to sign the consent form. Tasks were demon-
strated with explanations before we handed them the smart-
watch. The participants were seated and wore the smartwatch
on their wrists to use the finger of their dominant hand (see
Fig. 4). They practiced all conditions in each training session
with Q&A. After these training sessions, the participants
completed the conditions in the counterbalanced order.

In all conditions, the participants were asked to enter the
given phrases as quickly and precisely as possible. They were
able to relax between phrases. The participants were shown
10 random memorable phrases that only contain alphabets
from Enron Mobile phrases. Enron Mobile phrases collected
from the genuine mobile e-mails to evaluate the performance
in casual text entry tasks (e.g., messaging with a smart-
watch) [10]. The test application recorded visual feedback
conditions, presented sentences, prescribed sentences, and
touch locations with timing information to calculate entry
and error rates. After finishing each condition, a NASA-
TLX [52] and subjective rating using a five-point Likert
scale questionnaire were administered. The participants were
allowed to have break time between conditions as long as
they want. On average, the study took about 50 minutes.

There were four conditions for the user study as presented
in Fig. 3: (a) displaying decoded characters (DECODED),
(b) displaying decoded characters that are not nearest to the
touchpoints in a distinctive color (SHADE), (c) displaying

TABLE 3: Statistics for participant’s entry rate and error rate.

Entry Rate* Error Rate (%)*
Technique M (SE) 95% CI M (SE) 95% CI
DECODED 23.6 (1.7) [19.8 27.4] 2.4 (.7) [1.0, 3.8]
SHADE 25.3 (1.7) [21.6, 29.0] .9 (.3) [.4, 1.5]
STAR 24.0 (1.3) [21.1, 26.8] 1.0 (.3) [.2, 1.8]
TOUCH 21.9 (1.5) [18.6, 25.0] 1.4 (.4) [.8, 2.0]

"*" for decoded characters that are not nearest to the touch-
points (STAR), and (d) displaying the nearest characters from
the touchpoints (TOUCH). We ran the study as a within-
subject design where each participant performed tasks under
all conditions. There was a single independent variable with
the four levels.

C. RESULTS
In this section, we describe the result of the first experiment
comparing the performance, perceived workload, and user
preference of the four visual feedback conditions. We gath-
ered 480 phrases in total (12 participants × 4 conditions ×
10 phrases).

1) Entry rate
We measured words per minute (wpm). A word is de-
fined as five characters, including spaces, as in MacKenzie’s
work [53]. We measured the time between the first touch and
the last event, just before touching the end button. The grand
mean of entry rate was 23.7 wpm; the fastest was SHADE at
25.3 wpm, STAR at 24.0 wpm, DECODED at 23.6 wpm,
and the slowest was TOUCH at 21.8 wpm (Fig. 5 and
Table 3). Using repeated measures ANOVA, the main effect
of the visual feedback method on entry rate was statistically
significant (F3,33 = 3.32, p < .05, η2p = .23). Post hoc com-
parisons using the Bonferroni correction conducted. There
was a statistically significant difference between SHADE and
TOUCH (M = 3.5, p < .05, 95% CI [.0, 7.0]). There were no
statistically significant differences for all the other pairwise
comparisons.

2) Error rate
We calculated the error rate using CER [54], which is based
on the minimum string distance method. The grand mean of
error rate was 1.4%; the lowest was SHADE at 0.9%, STAR
at 1.0%, TOUCH at 1.4%, and the highest was DECODED at
2.4% (Fig. 5 and Table 3). Using repeated measure ANOVA,
the main effect of the visual feedback method on error rate
was statistically significant (F3,33 = 3.82, p < .05, η2p = .26).
Post hoc comparisons using Bonferroni correction revealed
that there were no statistically significant differences for all
the pairwise comparisons.

3) Subjective ratings
We collected participants’ subjective ratings on perceived
preference, accuracy, and speed using a five-point Likert
scale. Table 4 shows the average ratings and statistics for each
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FIGURE 5: Participants’ entry rate (left) and error rate (right).

TABLE 4: Average subjective ratings (1–most negative, 5–
most positive) and statistics from Freidman tests.

Technique DECODED SHADE STAR TOUCH χ2 p

Preference* 3.8 3.7 2.7 3.3 10.47 .015
Accuracy 3.4 3.5 2.9 3.3 2.84 .416
Speed 3.7 3.8 3.3 3.4 3.49 .322

TABLE 5: Average NASA-TLX score (lower is better.) and
95% CI for different conditions.

Technique DECODED SHADE STAR TOUCH
Mental* 7.4 [2.6, 12.2] 7.8 [4.0, 11.6] 12.1 [6.4, 17.9] 11.9 [7.7, 16.1]
Physical 3.1 [-.6, 6.2] 3.9 [.8, 6.9] 4.7 [.7, 8.7] 4.3 [1.5, 7.1]
Temporal 7.9 [2.5, 13.4] 6.8 [1.8, 11.7] 6.4 [4.0, 8.8] 11.1 [4.7, 17.6]
Performance 7.2 [3.9, 10.5] 7.1 [3.9, 10.3] 6.9 [4.4, 9.5] 6.2 [3.3, 9.2]
Effort* 9.1 [3.0, 15.1] 5.1 [1.2, 9.0] 11.4 [5.3, 17.6] 12.1 [6.4, 17.8]
Frustration 6.5 [.9, 12.0] 6.3 [.8, 11.9] 12.56 [6.5, 18.6] 8.5 [1.8, 15.1]
Total* 41.2 [24.4, 57.9] 37.0 [23.9, 50.1] 54.2 [39.9, 68.48] 54.1 [40.7, 67.4]

question. The perceived preference levels for DECODED,
SHADE, STAR, and TOUCH were 3.8, 3.7, 2.7, and 3.3,
respectively. Using Freidman test, there was a statistically
significant difference in perceived preference depending on
visual feedback conditions (χ2 = 10.47, p < .05, df = 3). Post
hoc analysis with Wilcoxon signed-rank tests was conducted.
There were statistically significant different ratings between
STAR and SHADE (Z = –2.36, p < .05) and between
STAR and DECODED (Z = –2.55, p < .05). For all the
other pairwise comparisons, there were no statistically sig-
nificant differences in rating. The perceived accuracy levels
for DECODED, SHADE, STAR, and TOUCH were 3.4, 3.5,
2.9, and 3.3, respectively. Using Freidman test, there was
no statistically significant difference in perceived accuracy
levels depending on visual feedback conditions (χ2 = 2.84,
ns, df = 3). The perceived speed levels for DECODED,
SHADE, STAR, and TOUCH were 3.7, 3.8, 3.3, and 3.4,
respectively. Using Freidman test, there was no statistically
significant difference in perceived speed levels depending on
visual feedback conditions (χ2 = 3.49, ns, df = 3).

For NASA-TLX surveys, Table 5 shows the partici-
pants’ scores and 95% CI. The total scores for DECODED,
SHADE, STAR, and TOUCH were 41.2, 37.0, 54.2, and 54.1,
respectively. Using repeated measure ANOVA, the main ef-
fect of the visual feedback method was statistically signifi-
cant (F3,33 = 5.64, p < .01, η2p = .34). Post hoc comparisons
using Bonferroni correction revealed that there was a statis-
tically significant difference between SHADE and TOUCH
(M = –17.1, p < .01, 95% CI [–29.4, –4.8]). For all the other
pairwise comparisons, there were no statistically significant
differences in total scores. For the mental scores, the main
effect of the visual feedback method was statistically signifi-
cant (F3,33 = 3.38, p < .05, η2p = .24) using repeated measure
ANOVA. Post hoc comparisons using Bonferroni correction
revealed no statistically significant differences for all the
pairwise comparisons. For the effort scores, the main effect
of the visual feedback method was statistically significant
(F3,33 = 3.45, p < .05, η2p = .24) using repeated measure
ANOVA. Post hoc comparisons using Bonferroni correction
revealed no statistically significant differences for all the pair-
wise comparisons. For the physical, temporal, performance,
and frustrations scores, there were no statistically significant
differences for the main effect of the visual feedback method.

D. DISCUSSION

The answer to Q1 is, "The SHADE method is the most
effective visual feedback method among possible design
options for displaying typed characters on an ultrasmall
soft keyboard in terms of typing speed, accuracy, and user
preferences."

It is noteworthy that the differences in the visual feedback
methods alone make significant differences in typing speed
and accuracy as well as subjective ratings. For the entry
rate, SHADE showed the best performance among the four
conditions (Table 3); and SHADE was significantly faster
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than TOUCH. In the case of TOUCH, when users have
chosen a key that was not intended by them, the output
textbox immediately shows the wrong character even the
decoder can autocorrect it. As a result, users might have to
slow down their input rate to select keys more carefully or
re-enter it after erasing the input.

For the error rate, SHADE also showed the lowest error
rate among the four conditions, whereas DECODED showed
the highest error rate (Table 3). In the case of DECODED,
when a user selects an incorrect key, it is possible that the
decoder autocorrects it into an intended key. In general,
the decoder can correct commonly used phrases well, but
uncommon phrases need to be entered more accurately. In the
case of DECODED, the output textbox shows the decoded
character, and the user cannot distinguish whether the dis-
played character is correctly selected or not. As a result, this
can make an increased error rate because of the imprecise
feedback for their touch input. We suspect that accurate
visual feedback on a user’s touch can help them select a key
more precisely in case of entering uncommon phrases.

For the subjective ratings, there were no statistically signif-
icant differences for perceived speed and accuracy, whereas
there was a statistically significant difference for perceived
preference. STAR received a relatively low score in sub-
jective preference (Table 4). However, interviews with the
participants showed both negative and positive feedback as
follows.

P5: "I was uncomfortable to see an asterisk when I
entered wrong."
P7, P8: "The stars are frustrating."
P10: "The star helped me understand that the text
entry was changing the wrong characters into the
word I wanted to type."

For the task workloads, NASA-TLX results indicate that
there were statistical differences in mental, effort, and total
scores, whereas there were no statistical differences in phys-
ical, temporal, and performance scores (Table 5). One of the
interesting findings is that STAR placed a relatively higher
workload than other conditions. We anticipate less workload
for STAR because less information is exposed to users. In
other words, only the asterisk character is displayed instead
of the modified character, so we expected there would be less
cognitive overhead. However, it is possible that users made
more efforts to infer the characters hidden by the asterisks.
In this regard, SHADE placed a relatively lower workload
than all the other conditions even though it carries more
information than others via color coding for the autocorrected
characters. Providing users with the appropriate information
about autocorrect not only increases typing speed and accu-
racy but also reduces the cognitive burden.

For the input method and decoder, users reported that
proper nouns (P8, P9, P10) and short words (P12) were hard
to type because the VHA decoder could not correct them
in some cases. The statistical decoder could not effectively
infer proper nouns, which have a very low probability in the
language model. It also has a higher miss rate for the short

words which have similar probability and input pattern such
as ’if’ and ’of.’ However, many participants reported that they
felt more comfortable with the VHA soft keyboard than they
thought; they were surprised to see that they were good at
typing on an ultrasmall keyboard (P2, P5, P7, P8, P10, P11).

P5: "I am surprised at how well it worked out on a
small screen."
P8: "This is very smart. I think it would be great
for message replying."
P11: "I am surprised to see that it was recognized
even if I took a rough touch of the position."

A participant (P4) with a slight hand tremble also typed
without noticeable accuracy degradation (CER = 1.9%). We
observed that P3 and P9 had improved the input speed
rapidly as the study session went on. We suspect that this
rapid improvement is possible because the participants could
quickly build the mental model for the decoder.

Through user observation, we found that building the cor-
rect conceptual model for the decoder is helpful for improv-
ing the accuracy and performance of typing. The SHADE
method allows users to understand the state of decoding
without frustration. As a result, we made a design decision
to adopt the SHADE method as our visual feedback among
the four conditions.

VI. EXPERIMENT2: SIMULATIONS ON WORD
PREDICTION
We ran simulations to know the maximum keystroke savings
(KS) according to the key parameters for the word prediction
design. We simulated the optimal user behavior and mea-
sured the effects of the three design parameters on KS—the
number of contextual words (n), window size—the number
of suggested words (k), and the number of candidate words
(c). We performed the simulations on the VHA implementa-
tion, which is described in section IV.

For the test set, we used MacKenzie’s phrases [2] and En-
ron Mobile phrases [10]. Those two phrase sets are the most
widely used to evaluate a text entry method. MacKenzie’s
phrases consist of 500 sentences, 2,712 words, and 14,307
characters. Enron Mobile phrases consist of 163 sentences,
862 words, and 4,015 characters. For Enron Mobile phrases,
we filtered out sentences that contain numbers or punctuation
in the middle of a word.

We measured keystroke savings (KS) using the same met-
ric as in the previous study [55]:

KS =
keysnormal − keyswith prediction

keysnormal
× 100%

A. SIMULATION 1: FIXING THE PARAMETER C
We conducted the first simulation to determine the appro-
priate number of word candidates that yield excellent per-
formance in real-time. We controlled the number of word
candidates (c), which is the maximum number of the words
generated by the GeneratePredictCandidates function in Al-
gorithm 2 (line 2). We measured the Keystroke Saving ratio
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 c = 10  c = 100  c = 1,000  c = 10,000
Time (s) 869 851 1,152 3,143
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FIGURE 6: Keystroke savings (KS) and its total execution time in seconds are measured along with varying numbers of
candidate words c, which is generated by the GeneratePredictCandidates(P) function in the prediction algorithm. We used
the target device (LG Watch Style) to measure the result against MacKenzie’s phrases (500 sentences, 2,712 words, 14,307
characters) and Enron Mobile phrases (163 sentences, 862 words, 4,015 characters).

and total execution time on the real target device–LG Watch
Style (LG-W270) smartwatch. We used the same 4-gram
language model (n = 4) described in section IV-A. We used
the prediction algorithm described in section IV-D. The word
prediction algorithm suggested one word (k = 1) for each
key input event. When the prediction algorithm suggested the
intended word, the user always selects the word and move on
to the next one immediately.

Fig. 6 shows the simulation result. In general, the total
execution time increases as the number of candidate words
for word decoding increases. However, it does not contribute
to the keystroke savings at the same rate because low-rank
words have little probability to be selected by the predic-
tion algorithm compared to the high-rank words. When the
number of maximum candidate words is 10 (c = 10), it takes
slightly longer than when c is 100. The main reason is that
the hit ratio is lower than the case of c = 100, resulting in
more word prediction attempts: 9,640 times when c = 10 and
9,341 times when c = 100 for MacKenzie’s phrases; 2,590
times when c = 10 and 2,540 times when c = 100 for Enron
Mobile phrases. Based on the experimental results, it is rea-
sonable to set the c value between 100 and 1,000, taking into
account the battery efficiency. On average, word prediction
was performed with 124 ms in MacKenzie’s phrases and 115
ms in Enron Mobile phrases when the number of candidate
words (c) is 1,000.

B. SIMULATION 2: COMPARING THE EFFECTS OF THE
PARAMETER N AND K

For the second simulation, we controlled the number of
context words (n) to query the N-gram language model and
the number of word suggestions (k) in the suggestions bar.
We fixed the number of candidate words (c) with 1,000. Fig. 7
shows the simulation result.

As expected, more suggested words contributed to better
keystrokes saving. However, as the number of word sugges-
tions (k) increases, the increase in keystrokes saving becomes

smaller and smaller according to the Pareto principle [56].
When using no contextual word (n = 1), the first suggested
word contributed 24.2%, while the second, third, and fourth
words contributed 8.9%, 5.2%, and 3.0%, respectively, for
MacKenzie’s phrases. Enron Mobile phrases showed a simi-
lar result. The first suggested word contributed 25.5%, while
the second, third, and fourth words contributed 7.3%, 5.2%,
and 3.9%, respectively. When using three contextual words
(n = 4), the first suggested word contributed 35.0%, while
the second, third, and fourth words contributed 8.6%, 4.7%,
and 2.6%, respectively for MacKenzie’s phrases; for Enron
Mobile phrases, the first suggested word contributed 36.9%,
while the second, third, and fourth words contributed 7.4%,
5.0%, and 2.5%, respectively.

Similarly, when querying the language model, more con-
textual words contributed to better keystrokes saving. When
using one suggested word (k = 1), the no contextual word
(n = 1) reported 24.2%, while the one (n = 2), two (n = 3),
and three (n = 4) context words reported 32.9%, 34.7%, and
35.0%, respectively for MacKenzie’s phrases; for Enron Mo-
bile phrases, the no contextual word (n = 1) reported 25.5%,
while the one (n = 2), two (n = 3), and three (n = 4) context
words reported 34.1%, 36.7%, and 36.9%, respectively.

As shown in Fig. 2b, most suggestion bar including
GBoard shows two or three words at once. In the suggestion
bar, both corrected and predicted words are given to the users.
However, providing a suggestion bar increases the number
of visual fixation targets from two to three. As a result,
users should gaze at the suggestion box in addition to the
QWERTY keyboard and the output text box for typing.

Considering that two or three words can appear on a
suggestion bar of a smartwatch at a time, we can use one
(k = 1) or two (k = 2) slots for the word completion purpose
because one slot is already used for the word correction pur-
pose. If we use more than one contextual word based on the
underlying 4-gram language model, we can make a similar
keystroke saving effect for the single-word selection with
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n = 1 n = 2 n = 3 n = 4
k = 1 24.2% 32.9% 34.7% 35.0%
k = 2 33.1% 41.9% 43.4% 43.6%
k = 3 38.3% 46.6% 48.1% 48.3%
k = 4 41.3% 49.4% 50.8% 50.9%
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FIGURE 7: Keystroke savings (KS) are measured along with varying numbers of contextual words n (based on N-gram model)
and numbers of suggested words (window size) k for word completion on two phrase sets—MacKenzie’s and Enron Mobile
phrases.

the contextual words compared to the multi-words selection
without a contextual word, as shown in Fig. 7.

The simulation result with MacKenzie’s phrases showed
that two contextual words (n = 3) and one suggestion slot
(k = 1) showed the keystroke savings ratio as 34.7%, while
no contextual word (n = 1) with two suggestion slots (k =
2) showed the keystroke saving ratio as 33.1%. Similarly,
the simulation result with Enron Mobile phrases showed that
one contextual word (n = 2) and one suggestion slot (k =
1) showed the keystroke savings ratio as 34.1%, while no
contextual word (n = 1) with two suggestion slots (k = 2)
showed the keystroke saving ratio as 32.8%.

Even though we already simulated the short messages as a
test set, messaging on the smartwatch can be more concise
than on mobile phones. A single word reply can be more
common. However, we can use the conversation history as
the contextual words in this case. To support it, the language
model also needs to learn the conversation pairs.

All in all, this simulation result leads us to an answer for
Q2: "N-gram language model can improve the hit ratio of
word prediction large enough to replace the multi-words
selection with a single-word one on a smartwatch-sized
device."

VII. LIMITATION AND FUTURE WORK
Providing accurate decoders and predictions is strongly re-
lated to the performance of the autocorrection and suggestion
features in the soft keyboard. It is also important for users
to build the correct conceptual model of the autocorrection.
Effective visual feedback on autocorrection can help users
understand the underlying decoder more precisely and thus
build a correct conceptual model for the soft keyboard. Our
experimental results show that this visual feedback allows
users to type more accurately without slowing down the
input. It would be an interesting future research direction
to investigate whether the effect of visual feedback will be
persistent and what kind of visual feedback is preferable for

both expert and novice users.

We also found that transcribing some words such as proper
nouns, abbreviations, and ambiguous words are error-prone
and irritating to users. It is challenging but worth pursuing to
research on improving the user experience even in such cases.
One solution for texting OOV words is to use a multistep
selection method in Table 2, such as ZoomBoard, which
reported error rate by 0.1% with 7.6–9.3 wpm when the
user turned off the autocorrection mode. Using a personal
language model also will be helpful to compensate for OOV
words in the general language model and its vocabulary [57].
If users want to correct the decoded output among ambiguous
words, we can provide a multi-select user interface. The inter-
face can suggest the probable words based on the likelihood
scores of the decoder’s candidate word.

VIII. CONCLUSION

We designed and implemented a soft keyboard that runs on
ultrasmall touchscreen devices with visual feedback and in
situ decoder. The decoder effectively corrected the words
that users typed, allowing fast typing (25.3 wpm with CER
= 0.9%) even on ultrasmall screens. Users were able to type
words more precisely with the help of our visual feedback
methods, without sacrificing the input speed. Even though
our studies were conducted on smartwatches, we believe that
our design and implementation would be of help for other
cases where the input channel is noisy, such as accessibility
support for those who have severe hand tremors as well as
one-handed typing with a thumb.
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