
Augmenting Parallel Coordinates Plots With
Color-Coded Stacked Histograms

Jinwook Bok , Bohyoung Kim, and Jinwook Seo

Abstract—We introduce Parallel Histogram Plot (PHP), a technique that overcomes the innate limitations of parallel coordinates plot

(PCP) by attaching stacked-bar histograms with discrete color schemes to PCP. The color-coded histograms enable users to see an

overview of the whole data without cluttering or scalability issues. Each rectangle in the PHP histograms is color coded according to the

data ranking by a selected attribute. This color-coding scheme allows users to visually examine relationships between attributes, even

between those that are displayed far apart, without repositioning or reordering axes. We adopt the Visual Information Seeking Mantra

so that the polylines of the original PCP can be used to show details of a small number of selected items when the cluttering problem

subsides. We also design interactions, such as a focus+context technique, to help users investigate small regions of interest in a

space-efficient manner. We provide a real-world example in which PHP is effectively utilized compared with other visualizations, and

we perform a controlled user study to evaluate the performance of PHP in helping users estimate the correlation between attributes.

The results demonstrate that the performance of PHP was consistent in the estimation of correlations between two attributes

regardless of the distance between them.

Index Terms—Parallel coordinates plots, parallel histogram plots, color-coded stacked histogram

Ç

1 INTRODUCTION

PARALLEL coordinates plot (PCP) [17] is a visualization
technique that arranges multiple attributes parallel to

each other in a 2D plane. Clusters of data items and rela-
tions between attributes, including correlations, can be per-
ceived by the patterns of lines in PCP. This pattern
recognition becomes harder, however, when lines overlap
more with each other as the number of items and attributes
increases. Furthermore, relationships between attributes are
difficult, if not impossible, to infer from visual patterns in
PCP when the axes are not adjacent. Many approaches have
been proposed to deal with these limitations, e.g., the over-
plotting of lines or the ordering of axes [16]; however, there
are still many challenges that researchers have to face when
visualizing data with PCP because of the innate limitations
of the original PCP. Sometimes, the limitations have been
resolved by sacrificing the original structure of PCP, which
significantly weakens its perceptual advantages.

In this paper, we introduce Parallel Histogram Plot
(PHP), a visualization technique that deals with the innate
limitations of PCP while preserving its perceptual advan-
tages and characteristics. Following the Visual Information-
Seeking Mantra [39], we augment the original polylines of
PCP with color-coded stacked bar histograms. Attached to
each axis of the original PCP layout, the histograms provide

a scalable overview by showing the distribution of data
items of each attribute. Polylines of PCP are used in the later
stages of the Visual Information Seeking process, when the
cluttering problem is less severe after less important items
have been filtered out. Colors applied to the stacked bars of
histograms are determined by a user-selected attribute.
Visual comparison of the color distributions on histograms
for multiple attributes reveals relationships between the
attributes without cluttering or overlapping of lines as in
PCP. Relationships between distant attributes that are hard,
if not impossible, to grasp in the original PCP can be readily
perceived in PHP through the visual comparison of color
distributions for the attributes. Improving upon our previ-
ous work [2], we also designed interaction idioms for PHP
to help users investigate the details of histograms in a lim-
ited screen space.

We illustrate a use case with a real-world dataset that
shows the advantages of PHP over other visualizations (i.e.,
PCP, SPLOM, and Angular Histograms (AH) [11]) in discov-
ering hidden patterns of items.We show that the color coded
histograms in PHP can complement the original PCP by
addressing the challenge of overplotting of lines, thus pro-
viding a more scalable overview in the context of the Visual
Information SeekingMantra.We also performed a controlled
user study to evaluate how PHP helped users estimate the
correlation between two attributes compared with PCP and
AH. It was empirically demonstrated that color-coded histo-
grams enable PHP to consistently show satisfying perfor-
mance in correlation estimation regardless of the distance
between attributes, providing a newway of dealingwith one
of the innate limitations of the original PCP.

We begin by reviewing related work on techniques for
enhancing the original PCP, especially those utilizing histo-
grams. Next, we explain how we designed PHP along with
our design rationale. We then present the visual information-
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seeking process with PHP, focusing on user interactions for
exploring data in PHP. After presenting a use case and empir-
ical evaluation results, we discuss the implications of our
experimental results, along with the limitations of PHP and
potential futurework to overcome them.

2 RELATED WORK

This section introduces previous research upon which we
built our visualization and interaction idioms in this study.
We first summarize previous approaches to enhancing the
performance of PCP. Then, we introduce Attribute and
Influence Explorer [40], [41] which inspired our work
through the way it utilizes histograms of stacked elements.

2.1 Approaches to Enhancing PCP

Many efforts have been devoted to enhancing the perfor-
mance of PCP. They have focused mainly on making it
more scalable by reducing visual clutter. These efforts can
be grouped into four categories according to the types of
techniques employed: reduction, transformation, integra-
tion, and interaction.

Reducing the Number of Items displayed on PCP is a popu-
lar approach. Such a reduction results in fewer polylines,
thus leading to less cluttering. Reducing the number of
items to show is done mostly by aggregating (or compress-
ing) the data. Because it is subject to information loss, main-
taining the characteristics of the original data as much as
possible has been the main concern of this approach. Vari-
ous data reduction methods have been introduced, includ-
ing clustering [10], [22], binning [31], sampling [7], and
image-space methods based on image processing algo-
rithms [1]. The number of dimensions can also be reduced
by using dimension hierarchy [46], by measuring the dis-
tance between attributes [18], and by contracting adjacent
axes [30]. Finally, without any form of data reduction, the
ordering of the dimensions can be changed for a more
orderly overview [6], [26], [27], [33], [48]. Reordering attrib-
utes is critical in PCP because it is impossible to investigate
relationships between nonadjacent attributes.

Transforming the Components (polylines and axes) of PCP
is another well-known approach. Bezier curves can replace
the polylines of PCP, which are more appropriate for bun-
dling and thus more suitable for presenting clusters of items
[15], [32], [45]. Other methods of transforming the polylines
include density fields [14], polygons [28], bands [25], and
layers of consistency maps [29]. These substituted visual
elements can serve a specific purpose better compared with
the original polylines. For example, in the method of Paral-
lel Sets [25], the lines are replaced with bands to effectively
visualize categorical variables. The axes of PCP are also tar-
gets for transformation. The arrangement of the axes can go
beyond the 1D linear one. They can be arranged on a 2D
plane [3] or in a 3D space [5], [20] to enable users to examine
relationships among multiple attributes. The axes can even
be transformed into curves [34] to show the data in a polar
coordinate system, or be tilted by the tension of lines in PCP
[44]. When applying these approaches, we should consider
the trade-off, in that we could lose the strong perceptual
advantage of the original visual encoding of PCP in correla-
tion estimation by (line-crossing) pattern recognition.

Integrating Other Visualizations with PCP can facilitate the
visual information-seeking process by revealing different
facets of the data that are difficult to grasp only from the
patterns of polylines. Scatterplots that display the relation-
ship between two attributes are popular visualizations for
such a purpose [35], [47]. Stacked bar charts [19] and histo-
grams [11] attached to an axis of the PCP can show the dis-
tribution of each attribute. Other visualization idioms can
also be integrated with PCP, including star glyphs [8], box
plots [19], [24], spherical coordinate systems [43] and MDS
plots [12]. In PHP, we integrate color-coded histograms
with PCP to visualize the overview of multiple attributes in
a scalable manner. Color-encoding acts as an important
channel that reveals the relationship between attributes,
even when they are not adjacent to each other.

There have been a few attempts to use color as an auxil-
iary channel for delivering additional information, such as
the distribution of values of an attribute. In Value-cell bar
charts [23], bars are split into multiple cells that correspond
to one or more individual values. The cells are color coded
by the sum of the values. From the color distribution made
by each of the cells, the distribution of the values in each of
the bars can be inferred. Janetzko et al. [19] utilized color-
coded stacked bar charts on the axes of PCP to show clusters
generated by K-means clustering. Geng et al. [11] used color
in Angular Histograms for redundantly encoding the height
of the tilted bars to help users perceive the height more
accurately. In contrast to these approaches, our method
uses the color channel for showing the linear relationships
between attributes. Using colors in histograms attached to
axes makes it possible for users to grasp linear relationships
between (even distant) attributes through implicit connec-
tions made by perceptually matching colors. Unlike [23],
which uses colors to reveal the distribution of values within
a single bar chart, PHP uses colors to reveal the relationship
between multiple distributions or attributes. This approach
enables the analysis of data with multiple attributes. Com-
pared with [19], in which colors are mapped onto the
groups generated by a clustering algorithm, our approach is
more universally applicable and provides the direct rela-
tionships between attributes. In addition, compared with
[11], in which histograms must be tilted, our approach pre-
serves the original shape of the histograms to prevent users
from getting confused by the distortion. Also, the color
channel is used as a pivotal channel that reveals the rela-
tionships between attributes in PHP, rather than as a redun-
dant channel as in [11].

Interaction Techniques also help users find information
with PCP by facilitating the exploration process. Lack of
interaction in PCP is known to discourage users from draw-
ing information from the visualization [21]. The Angular
Brushing technique enables users to filter data by the
value of the angle between the line and the axis in PCP [13].
Roberts et al. designed a sketch-based brushing for high-
dimensional pattern searches and a data-dependent smart
brushing based on metadata [37]. When a visualization is
integrated into PCP, novel interactions are often designed to
make it work harmoniously with PCP. For instance, OPCP, a
visualization technique that integrates a scatterplot-based
visualization into PCP, has a dedicated interaction named
O-brushing for facilitating pattern selection in complex data
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[35]. In PHP,we also designed interaction techniques that aid
users in investigating small regions of a histogram that are
too small for details to be seen — e.g., two-level semantic
zooming that can enlarge a small selected region of the histo-
gramwhile maintaining the overall layout of PHP.

2.2 Attribute and Influence Explorer

Attribute Explorer [41] and Influence Explorer [40] are tools
for exploring data with multiple attributes using histo-
grams. In both tools, each attribute is represented as a histo-
gram, and they are drawn parallel to each other. The
histograms of Attribute or Influence Explorer are con-
structed as a stack of ‘lightbulbs’, each lightbulb represent-
ing a single data element. When query conditions are set,
only the lightbulbs that satisfy the conditions are lit (in
Influence Explorer, in addition to being lit/not lit, each
lightbulb has a brightness level that is proportional to the
number of conditions it satisfies). Users can make compari-
sons across dimensions by observing the distributions of lit
and unlit lightbulbs, or of selected and unselected light-
bulbs. When they choose a lightbulb on an attribute, corre-
sponding lightbulbs on other attributes are connected by a
polyline in the same way as in PCP.

The histograms of PHP are built upon a similar meta-
phor, while making it more scalable and informative. In
PHP, a single stacked bar that corresponds to an Explorer’s
lightbulb represents an aggregated group of items. Unlike
the lightbulbs, the bars have an additional length property
to show the size of the corresponding group. Moreover,
each bar has a distinct color to show the similarities or dif-
ferences between groups. As in Attribute and Influence
Explorer, the distribution of the selected items/groups can
be compared with the overall distribution. The length of the
bars changes according to the number of selected items,
which can be compared with the full histogram rendered in
the background, as in Fig. 6a. In Fig. 6a, the overall distribu-
tion in dark gray can be compared with the distribution of
the selected items rendered in colors.

3 DESIGN OF PHP

This section explains the design concepts behind PHP (Fig. 1)
. We first introduce our design rationale and then explain
how the color-coded histograms of PHP are constructed.

3.1 Design Rationale

Our approach focuses on overcoming the limitations of PCP
while maintaining its original advantages. PHP is designed
to deal with two critical limitations of PCP: (L1) cluttering
of polylines and (L2) the difficulty in estimating relation-
ships between nonadjacent axes.

L1 – Cluttering of Polylines

The polyline encoding of PCP helps users recognize clus-
ters/outliers and estimate correlations from visual patterns
made from the line crossings. However, such encoding
inherently suffers from a scalability issue, in that polylines
clutter the view with too many overlapping lines. The prob-
lem becomes worse as the data size becomes larger.

L2 – Difficulty in Estimating Relationships Between Non-
Adjacent Axes

PCP utilizes a linear layout to display multiple attributes.
The linear layout is easy to understand and allows multiple
attributes to be displayed in a relatively small area. How-
ever, the layout makes it challenging to interpret the rela-
tionship between attributes that are not adjacent. Thus,
finding an effective order of attributes in PCP has been an
important research topic.

To achieve our design goal of overcoming the two main
limitations of PCP while preserving its advantages, we
attach a histogram to each PCP axis. Histograms can reveal
the distribution of data items on each attribute in a scalable
manner, irrespective of the data size. It is also a relatively
simple visualization that does not require any drastic modi-
fication of the original layout of PCP, fulfilling our objective
of maintaining the innate advantages of PCP. However, his-
tograms have the limitation that they cannot show any rela-
tionships between attributes [11]. To resolve this limitation,
we adopt color as a crucial visual channel for expressing the
relationships between attributes. We order the data items
by a user-selected attribute and split the data items into
groups according to the order while ensuring that each
group has a similar number of items. We represent each
group as a bar and assign a unique color to each group. We
then build histograms by stacking color-coded bars, with
each bar representing a group. By comparing color distribu-
tions on attributes in PHP, users can estimate the relation-
ships not only between adjacent attributes but also between
distant ones even without direct connections. The indirect
connection provided by colors in PCP is free from cluttering

Fig. 1. Parallel Histogram Plots (PHP) used to draw the CASP dataset [42]. The attribute F2 is selected for color coding. From the color distribution, it
can be deduced that F2 is positively correlated with F1, F5, and F6 and negatively correlated with F9. In addition, the data items in the upper-right
region (red circle) of the F9 histogram are selected and thus displayed as polylines. The widget on the F9 histogram helps with clicking tiny bars on
the histogram.
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and less influenced by the distance between the attributes.
With the adoption of color encoding, the ordering of axes
becomes much less important, as the relationship between
attributes can be perceived by matching colors even when
they are distant from each other. The next section and Fig. 2
show how PHP is built from data.

Following the Visual Information-Seeking Mantra [39],
we utilize the original polylines of PCP along with the
color-coded histograms. The colored histograms are good at
displaying an overview of the data and the relationships
between attributes; however, they are not effective in help-
ing users estimate the exact value of each data item. Mean-
while, polylines excel in helping users grasp the value of
each data item at an attribute, but they easily suffer from
cluttering when there are many of them. Thus, we combine
these two components so that they complement each other.
In the beginning, color-coded histograms show an overview
of the data. After zooming and filtering out less important/
relevant data items in the histograms, the polylines show
details of a small group of data items selected from the his-
tograms, enabling users to take advantage of the original
PCP design.

3.2 Construction of Color-Coded Histograms

3.2.1 Grouping Data Items

To construct the color-coded histograms of PHP, we first
split the data into equally sized groups according to a user-
selected attribute (Fig. 2a). Instead of using the original data

value of the selected attribute to derive groups, we use rank-
ing as the criterion to create groups. First, data items are
sorted by the user-selected attribute, and the data items are
grouped according to the ranking. Unequally sized groups
could occur because we make sure that data items with the
same value for the selected attribute are placed together
when splitting groups. This prevents data items that have
the same value for the selected attribute from being incon-
sistently placed in different groups. Grouping by ranking
mitigates the effects of outliers and skewed distributions in
the color mapping, which will be applied to each group in
the next step.

3.2.2 Applying Colors to Groups

Second, we apply a unique color to each group of the split
data using a discrete, diverging color scheme (Fig. 2b). A dis-
crete color scheme is used, so that a color in the color scheme
is assigned to a group. The color scheme is designed to dis-
tinguish between groups and to show the differences (or sim-
ilarities) between them. We adopt this scheme to emphasize
low- and high-ranked groups with more saturated colors
because they are usually more valuable in the data analysis.
In this paper, we use a ten-level blue-red diverging color
scheme acquired from ColorBrewer2 [4] (low to high rank-
ings from blue to red). We chose 10 as the number of colors
to be rendered, which is close to the number of colors that a
human can distinguish simultaneously [19].

3.2.3 Building Stacked-Bar Histograms

Finally, using the preprocessed data (grouped by ranking
and then color mapped), we draw a histogram that repre-
sents the distribution of each attribute on the corresponding
PCP axis (Fig. 2c). The histogram is constructed in the same
way as a stacked bar chart is drawn, with each group in its
unique color. When groups are stacked, the order of the
color-coded elements must agree with the order of the col-
ors in the color scheme so that elements in the same color
are merged. This helps users perceive patterns from the
color distribution. Users can also recognize the relationship
between the selected attribute and others by perceiving the
distribution patterns of colors across the histograms. The
stacking of elements in PHP makes the layout similar to that
of Attribute and Influence Explorer, with a histogram con-
sisting of stacks of lightbulbs that represent individual data
items. In PHP, however, a single stacked element represents
a group of data, and its length is proportional to the number
of data items belonging to the group in the corresponding
attribute.

4 VISUAL INFORMATION SEEKING WITH PHP

Using the visual encoding idioms of PHP 1, users can recog-
nize important features in the data, including the distribu-
tions of attributes, correlations between attributes, and
outliers. We also design interaction idioms combined with
the visual encoding idioms, including two-level zooming
and ghost bars for more scalable and space-efficient

Fig. 2. How PHP is constructed from data. (a) Data items are sorted by a
user-selected attribute (attribute B), and items are grouped (Ga �Gd)
according to the sorted order, i.e., the rank data items of the selected
attribute. (b) A unique color is applied to each group, with a diverging col-
ormap: a reddish color for higher ranks and a blueish color for lower
ranks. (c) Stacked histograms are rendered in the applied color.

1. A demo version of PHP is available at https://bokjinwook.
github.io/ParallelHistogramPlots/index.html
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exploration. In this section, we use 16 years of accumulated
statistics data of baseball pitchers in Major League Baseball,
acquired from FanGraphs [9], as the dataset for ease of
explanation. The dataset contains 7,673 items representing
each player’s record of a year, with 17 sampled attributes
reflecting the players’ performance.

4.1 Interpreting PHP

PHP utilizes color coding derived from a single user-
selected attribute, the so-called pivot attribute (Fig. 3). In
PHP, selecting the pivot attribute is a crucial step in reveal-
ing features in the data. Visually comparing color distribu-
tions on histograms can reveal relationships between the
pivot attribute and all the other attributes. Users can steer
their data exploration by changing the pivot attribute to
seek relationships between attributes with different aspects.
This methodology can be used effectively in situations in
which only some of the attributes in the dataset are familiar.
Users can start their exploration by first selecting a familiar
attribute as the pivot attribute and then expand their knowl-
edge from the known to the unknown attributes by analyz-
ing their relationships.

Correlations between the pivot attribute and other attrib-
utes of interest can be estimated just by visually comparing
the color distributions of the corresponding histograms. For
example, in Fig. 4, the attribute X is selected as the pivot
attribute, with the color changing from blue to red from bot-
tom to top. The histogram for the attribute Positive shows a
color distribution very similar to that of the attribute X,
implying a strong positive correlation between these two
attributes. But the histogram of the attribute Negative

shows a color distribution inverted from that of the attribute
X, implying a strong negative correlation between these two
attributes. By the same principle, in Fig. 3b, it is easy to rec-
ognize that WPA and LOB percent are positively correlated
with the pivot attribute wFB. Meanwhile, it can also be eas-
ily recognized that BABIP, HR/FB, ERA, and FIP are nega-
tively correlated with wFB, as such visual recognition is not
affected by the distance from the pivot attribute.

Users can also recognize clusters of items that have simi-
lar color patterns, or outliers that do not follow the major
color patterns around them in the histograms. Similar colors
gathered in a small region indicate that the data items shar-
ing similar properties are clustered in that region. In Fig. 3a,
in which the histograms are color coded by the attribute IP,
it can easily be observed that data items with high IP values
are tightly gathered in the lower middle of the attribute G.
Meanwhile, salient colors indicate that there exist data items
outside the overall distribution of those that surround them,
suggesting outliers. Fig. 5 displays a magnified histogram
of WAR from Fig. 3b. Some data items in the green box
have salient blue colors that are different from the overall
red surroundings. Compared with most of the items nearby,
these outliers have much lower rankings of the pivot attri-
bute wFB, as is apparent from their distinct colors.

Like many other PCP-based visualizations, PHP sup-
ports common PCP-based interactions, including selecting
items by the range of an attribute’s value with brushing and
changing the order of axes. In PHP, ordering axes is less
important, as the relationship between attributes can be

Fig. 3. The Baseball dataset [9] rendered in PHP. The attribute selected for color coding (i.e., the pivot attribute) is bordered by a green rectangle
((a) IP and (b) wFB). Relationships between the pivot attribute and all the others can be observed from how the colors are distributed.

Fig. 4. Example of positive and negative correlations displayed in PHP.
The attributes, Positive and Negative have positive (+0.8) and negative
(-0.8) correlations with attribute X, respectively.

Fig. 5. Histogram of WAR from Fig. 3b. The area inside the green box is
magnified for visibility. In the region of the green box, it can be observed
that some blue items are distant from the overall red data items.
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observed just by color even when they are far away. None-
theless, PHP enables users to sort the attributes by correla-
tion or similarity for a more efficient analysis of the data.
PHP also supports common interactions/modifications
related to histograms, such as selecting a range of data or
bars of interest in the histograms or changing the number of
bins. In PHP, we adopt the analytical strategy of comparing
the distributions between selected and unselected data of
Attribute and Influence Explorer [40], [41]. When items of
interest are selected, the color-coded stacked bar histogram
for the selected data is shown in the foreground, while the
original histograms for all the data are shown in grayscale
in the background of PHP (Fig. 6a). In this way, the charac-
teristics of the selected data can be examined in the context
of the whole data.

Following the Visual Information-Seeking Mantra, we
enable users to harmoniously use the original PCP in PHP,
in situations in which the power of the pattern recognition
in the original PCP can shine, i.e., exploring a smaller group
of selected items with less clutter. When a user selects a bar
for a group of items of interest by hovering over or clicking
on it, the corresponding data items are shown as polylines
as in the original PCP (Fig. 6b). This interaction can help
users make a connection between histograms and PCP lines.
Users can show or hide either the histograms or the poly-
lines to avoid potential visual interference between the lines
and the bars. In Fig. 6b, the outliers selected from Fig. 5 are
displayed as polylines. Detailed information about the
selected data can be revealed from the polylines. The poly-
lines show that the selected outliers tend to share similari-
ties, and that they have relatively low wFB; high WPA; and
low FIP, ERA, and HR/FB.

4.2 Tools for Zooming in on Small Bars

While clicking and hovering interactions on histograms are
simple and intuitive actions, issues arise when users must
interact with small components in the visualization, which
are hard to see and select. Each bar of a histogram in PHP
consists of stacks of color-coded bars. Among the stacked
bars, there can be small bars that are hard to interact with.We
designed interaction techniques to overcome such problems.

4.2.1 Two-Level Zooming

One of the main issues with searching for information in
histograms of stacked bars is the difficulty of noticing bins

that are rendered too small owing to a skewed distribution,
outliers, etc. To support observing small bins and bars, we
introduce a two-level zooming interaction technique. First-
level zooming, named focus+context zooming, widens the
gap between axes to assign more space to an axis of interest
while preserving the contexts around it in a shrunk space.
In PHP, a histogram is horizontally attached to an axis, and
thus occupies the space between two adjacent axes. Widen-
ing the gap between axes by dragging an axis gives more
space to the histogram shown in the gap, which can reveal
more details about the histogram (i.e., small bars getting
bigger) (Fig. 7a). As in the focus+context technique used in
Table Lens [36], users can horizontally increase the size of
histograms to see more details while maintaining contextual
information about all the data in the visualization.

Focus+context zooming still has limitations if the distribu-
tion of a histogram is skewed toomuch. In such a case, a very
large space is required for the histogram to see the details of
tiny bars, which sacrifices the space for other histograms.
Considering this problem, we complement first-level zoom-
ing with another space-efficient, second-level zooming tech-
nique called clamp zooming. Clamp zooming is a ‘within-
area’ zooming technique. Without changing the allocated
space for a histogram, it horizontally stretches each bar inside
the histogram with the same magnification, being maxed out
when reaching the maximum length. When the bars reach
the maximum length, they are gray colored to distinguish
them from other, smaller, not-maxed-out bars, which helps
users focus on the smaller bars (Fig. 7b). This clamp zooming
helps users investigate the long tail of a skewed distribution.
In Fig. 7b, outliers that had to be enlarged extensively in
Fig. 5 (distinct blue items in the upper region of theWAR his-
togram) can be seen in a relatively smaller space.

When clamp zooming maxes out all bars, the original col-
ors of the bars are restored, and the histograms transform
into a heatmap visualization (Fig. 7c). This heatmap visuali-
zation is useful in extreme conditions, such as when the
space allocated to a histogram is so small that the colormap
from the histograms is hard to perceive. It can also be used
to display a relatively high number of attributes within a
limited screen size.

4.2.2 Ghost Bars for Invisibly Small Elements

When scaling histogram bars to fit the allocated space
between axes, it is often inevitable that some bars cannot be

Fig. 6. Displaying selected items in PHP. (a) Data items with high IP values are selected from Fig. 3. The distribution of selected items can be com-
pared with the overall distribution, revealing that the selected items are gathered in the lower-middle narrow region of G. (b) The distinct blue items
among the dominant red items in the WAR histogram are selected from Fig. 5 to be displayed by polylines. The polylines reveal detailed characteris-
tics of the selected data items.
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shown because their heights become smaller than one pixel.
In Angular Histograms [11], another histogram-based PCP
visualization, this problem is resolved by using an addi-
tional visual encoding idiom named Attribute Curves. Attri-
bute Curves provides a clue that some data elements exist in
a bin. But this approach takes additional space along with
the original visualization. We adopt a more space-efficient
approach by using a visual cue within the visualization that
implies the existence of small bins, named ghost bars. The
ghost bar technique shows a small but noticeable gray bar
for originally invisible bins, whose length is too short to be
shown on the current scale (Fig. 7d). From the gray bars,
users can determine whether any bins are unseen because
of their small size. The ghost bars are colored this way so
that they can be distinguished from the normal histogram
bars. Furthermore, they can be untoggled when they are not
needed to prevent confusion.

4.2.3 Support for Selecting Tiny Bins

Finally, we provide a UI widget to help users select small
bins in a histogram bar. When users click on the empty area
right next to a (small) bar in a histogram, a widget pops up
and shows a color panel, in which the colors used in the bar
are shown as patches (Fig. 7d). In contrast to trying to
directly click on the small bar in the histogram, which may
be challenging, the color patches on the pop-up can be eas-
ily and more accurately clicked. Sometimes the pop-up wid-
get can show colors that are invisible in the original small
bar, which correspond to the invisibly small bars in the cur-
rent scale.

5 COMPARISON WITH OTHER VISUALIZATIONS

In this section, we demonstrate the efficacy and utility of
PHP compared with other similar visualizations, e.g. the
original PCP, AH [11], and scatterplot matrices (SPLOMs).
For comparison, we used the protein tertiary structure data-
set [42], which consists of 45,730 items with 10 attributes
(i.e., the physicochemical properties of proteins). This data-
set is part of the CASP (Critical Assessment of Techniques
for Protein Structure Prediction) dataset, which contains
various properties of a protein’s structure.

As can be observed in Fig. 8a, the two main limitations of
PCP previously discussed (L1 and L2) prevail in PCP.
Because there are many items in the dataset, the overlap-
ping of polylines is too severe in the original PCP, even
though the lines are rendered translucent to mitigate the
overlap. AH and PHP (Figs. 8b and 8c) both mitigate the
cluttering issue using histograms. AH utilizes a vector-
based approach for each bar of the histogram, with an addi-
tional attribute of direction determined by the mean angle
of the polylines in the corresponding bin. Owing to this
direction attribute, the histograms are tilted, likely making

Fig. 7. Various interactions of PHP designed to deal with small components. (a) Focus+context zooming enables users to enlarge histograms of inter-
est (the histograms of WAR are enlarged when the axis is dragged). (b) Clamp zooming helps in observing small elements in a space-efficient manner
(from left to right, the histograms ofWAR are increasingly clamp zoomed). (c)When clamp zoomingmaxes out all bars, the histograms turn into a heat-
map-like visualization that can display the color distribution in aminimal space. (d) Ghost bars in the right two histograms of BB/9 andHR/9 help identify
small bars that are unseen in the leftmost normal histogram of BB/9. TheUI widget of pop-up color patches helps users click on tiny bars.

Fig. 8. CASP dataset rendered in (a) PCP, (b) AH, and (c) PHP. F7 is set
as the pivot attribute in PHP. In PHP, the relationship between F7 and
other attributes can be discovered by how the colors spread in the histo-
grams, whereas in the other visualizations such discovery is hindered by
the skewed distribution of F7.
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it hard to derive their exact distribution [11]. To deal with
this limitation, AH utilizes colors as an additional channel
to show the length of each histogram’s bars [11]. In contrast,
PHP does not distort the distribution and utilizes color as a
channel to show the relationship between the pivot and
other attributes. The use of the color channel makes it possi-
ble to identify the relationship between non-adjacent attrib-
utes, in contrast to AH, in which determining the
correlation depends heavily on the ordering of axes, as in
other PCP-based visualizations [11]. In PHP, users can find
information in a more time-efficient manner because there
is no need for reordering the attributes to deduce the rela-
tionships between them.

PHP can display more attributes in a limited space than
AH. PHP renders one histogram for each attribute, but AH
renders two histograms for each attribute (excluding the
first and last ones), taking roughly double the amount of
space to render equally sized histograms. Thus, each histo-
gram of PHP is rendered about two times larger than a his-
togram of AH. In larger histograms, users can observe
subtle patterns or smaller bins more accurately, as well as
being able to see whether the difference in histograms is
tilted or not. This space efficiency also becomes an issue in
SPLOMs when visualizing multiple attributes (Fig. 8d).
When visualizing data with n attributes, in SPLOMs n � n
scatterplots are rendered, compared with n histograms in
PHP. SPLOMs become highly congested with scatterplots
as the number of attributes increases, and each scatterplot
becomes smaller, making it harder to observe relationships
between attributes. When visualizing multiple attributes,
the space efficiency of a visualization is important because
it is directly related to how many attributes can be dis-
played in a limited screen space—i.e., the scalability of a
visualization by the number of attributes. Compared to
other visualizations, PHP can visualize the relationship
between multiple attributes in a more space-efficient man-
ner, benefiting users who aim to find information across
multiple attributes.

In the protein dataset, the attribute F7 is radically skewed
toward the bottom side of the axis. This skewness affects the
performance of PCP-based visualizations. In Figs. 8a and 8b,
the nearby lines and histogram bars in PCP and AH, respec-
tively, are drastically slanted toward the lower direction. In
contrast, PHP is more resilient to this skewness issue, as the
shape of an attribute’s distribution is independent of other
attributes, unlike in PCP and AH (Fig. 8c). Moreover, corre-
lations between the skewed F7 and other attributes can be
observed by selecting F7 as the pivot attribute. In this case,
the color encoding is determined by the ranking of F7, so
the color distributions of all histograms show the relation-
ships between F7 and the other attributes, not affected by
the skewness of F7. In Fig. 8c, F1, F2, F4, F5, and F6 have
positive correlations, F3 and F8 do not have a particularly
positive or negative correlation, and F9 has a negative corre-
lation with the skewed F7. PHP requires only selecting the
skewed attribute as the pivot attribute, whereas other visu-
alizations need further processing of the data (enlarging the
visualization, filtering out outliers, logarithmic scaling, etc.)
to observe more information.

Utilizing colors in PHP enables the discovery of interest-
ing patterns. In Fig. 1, the notable red colors in the upper

region of the attribute F9 (circled in red) indicate that the
data items in that region do not follow the negative correla-
tion between F2 and F9. The same information is almost
impossible to obtain from AH or PCP because the attributes
F2 and F9 are not adjacent to each other. While a SPLOM
can show all pairwise relationships at once, it is also hard to
find patterns in SPLOMs (Fig. 9) because each scatterplot is
not rendered large enough owing to the number of attrib-
utes, and such interesting data items do not stand out as col-
ors as in PHP. A focus+context technique or a simple
interaction, such as selecting a scatterplot of interest to be
shown as an enlarged inset, could be employed in SPLOM
to mitigate this problem. In PHP, such a small group of
interesting data items can be selected and displayed as poly-
lines, as in the polylines of Fig. 1. Because only a small por-
tion (about 1 percent of the data) is selected, the items can
be displayed without cluttering. Characteristics of the
selected items can be observed from the polylines, with the
selected items seeming to show a negative correlation
between RMSD and F1.

The color mapping used in PHP can also be applied to
other visualizations to improve the information-seeking
process. One example of this is shown in Fig. 9, in which the
color mapping of PHP (F7 is set as the pivot attribute) is
applied to scatterplots in the lower-right triangle of SPLOM.
From how the colors spread out in individual scatterplots,
additional information related to the pivot attribute can be
inferred. For example, from the scatterplot between F4 and
F9, it can be observed that items with high-value items of F7
are spread mostly in the upper-left region, while items with
lower values of F7 are spread mostly in the lower-right
region. This indicates a positive correlation between F4 and
F7 and a negative correlation between F9 and F7, which can

Fig. 9. CASP dataset rendered as a scatterplot matrix (SPLOM) with the
colors of PHP (F7 is the pivot attribute) applied to the scatterplots in the
lower-right triangle of the matrix. The colors enable additional discovery
in how the items spread out in the context of F7, e.g., the items with high
values for F7 (red) gather in distinct regions (right or left regions) in the
scatterplots between RMSD and other attributes.
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likewise also be discovered in PHP. Also, in most of the
scatterplots of RMSD and other attributes, it can be
observed that items with a high value of F7 (red) are gath-
ered in distinct regions, either the right or the left region
(i.e., having high or low values of the corresponding attri-
bute). However, the scatterplot between F3 and RMSD
shows a distinct pattern, with items with a high value of F7
being gathered in the middle region of F3 and the upper
and lower regions of RMSD.

6 USER STUDY

We conducted a controlled user study to assess the perfor-
mance of PHP in terms of correlation coefficient retrieval.
The user study consisted of two within-subject tasks. In the
first task, we compared the performance on correlation
retrieval between two attributes. In the second task, distance
between two attributes was added as a factor to measure
how the PCP-based visualizations perform when retrieving
the correlation between non-adjacent attributes. The order-
ing of the two tasks was fixed for all the participants: The
first task was performed before the second task.

We selected three visualizations to be compared with
PHP: PCP, scatterplot, and AH [11]. PCP was selected as a
baseline condition to show the level of improvement of our
design. While PHP is an improved version of PCP, its visual
cues used to judge the correlation are different (color pat-
tern in PHP versus line crossing in PCP). We intended to
measure the effect of such a difference in visual encoding.
Scatterplots were selected because they are commonly used
and known to be the best method for visually analyzing the
relationship between two attributes. They were used as
another baseline for comparison with other techniques. We
chose AH among various other improvements of PCP con-
sidering that, like PHP, it uses histograms to deal with scal-
ability. Other approaches that use histograms [19], [40], [41]
were also considered but were discarded because the visual
property of the histograms of these methods does not sup-
port correlation retrieval task and requires interactions to
derive any correlation between attributes.

6.1 Design

For the experiment, we recruited 36 participants from a uni-
versity’s online community (25 males, 11 females; aged 21-
33 [mean � SD: 25.6 � 2.6]). Participants were screened
according to two conditions: (1) participants should be
familiar with the statistical terms used throughout the
experiment (e.g., Pearson correlation coefficient), and (2)
participants should not be colorblind. On average, the user
study lasted about 60 minutes. The participants were paid
about 10 dollars for their participation. A 27-inch LG moni-
tor (27MP48HQ) was used to display the visualizations for
all conditions.

Before performing the tasks, the participants received
instructions for each visualization. The instructions
included how the visualization is constructed from raw
data, and how to interpret the patterns in the visualization
to retrieve the correlation. For all visualizations used in all
tasks, the interactions were disabled; only the visual encod-
ings were utilized to retrieve the correlation coefficient.

6.1.1 First Task: Two Attributes

In the first task, users were asked to estimate the correlation
coefficient (ranging from -1 to 1, with an interval of 0.1)
between the two attributes displayed. In PHP, the leftmost
attribute was set as the pivot attribute. We recorded the
time and error rate of the responses. All responses in the
experiment were self-paced, and users typed in their
responses.

Two within-user factors were utilized in the experiment:
(1) type of the visualization to be displayed (PCP, scatter-
plot, PHP and AH, with the ordering being determined by a
Latin square (4 levels)) and (2) the correlation coefficient set
of the data (4 levels). The set of correlation coefficients were
defined to have 4 levels: �[0.9, 0.8, 0.7, 0.6] and �[0.5, 0.4,
0.3, 0.2, 0.1]. Each set will be referred to HP, HN, LP, and
LN, representing high positive, high negative, low positive,
and low negative coefficients, respectively.

In this task, we used randomly generated data from a
normal distribution with a fixed size of 1,000 items with
two attributes for each correlation coefficient set. A coeffi-
cient value was randomly chosen from a predetermined set
of correlation coefficients. A pivot attribute was first gener-
ated with a normal distribution. Then, the other attribute
was generated to follow the chosen coefficient value with
the pivot attribute. The actual correlation coefficient of the
generated data (pivot and other attributes) was slightly dif-
ferent from the chosen coefficient as noise was added dur-
ing data generation; however, we ensured that this
difference did not exceed 0.025. For each combination of
visualization method (4 levels) and correlation coefficient
set (4 levels), the coefficient estimation experiment was
repeated 5 times. Thus, a total of 4 � 4 � 5 = 80 responses
was collected.

Prior to the main task, training sessions were given to the
participants. The training session had the same conditions
as the main task, but the response was not recorded, and
the participants could check the answer and train them-
selves. A training session consisted of 12 responses, and
users could request more training sessions if needed. On
average, users performed around 2 to 3 training sessions
per visualization.

6.1.2 Second Task: Multiple Attributes

In the second task, 4 attributes were displayed in one of the
three visualizations (PCP, AH, and PHP). The users were
asked to estimate the correlation coefficient (ranging from
-1 to 1, with an interval of 0.1) between the leftmost attribute
and one of the other selected attributes. In this task, we did
not include scatterplots for comparison because their meth-
odology of displaying multiple attributes (scatterplot matri-
ces) greatly differs from other PCP-based visualizations
(PCP, AH, and PHP). We recorded the time and error rate
of the responses. All responses in the experiment were self-
paced, and users typed in their responses.

Three within-user factors were utilized in the experi-
ment: (1) the type of visualization (PCP, AH, and PHP) (3
levels, with the ordering determined by a Latin square), (2)
the correlation set of the target attribute (4 levels [HN, LN,
LP, and HP], the same as in the first task), and (3) the posi-
tion of the target attribute (3 positions excluding the
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leftmost; the leftmost attribute will be referred to as the
pivot attribute, and each position of the target attribute will
be referred to as the first, second, and third positions from
the left).

In this task, we used randomly generated data from a
normal distribution with a fixed size of 1,000 items with 4
attributes as in the first task. A pivot attribute was first gen-
erated with a normal distribution. Then, the other three
attributes were generated according to the pivot value.
When the attribute was not the target of correlation
retrieval, it was generated to have a random correlation
(between -1 and 1) with the pivot attribute. When the attri-
bute was the target of retrieval, the data was generated in
the same way as the target attribute in the first task. For
each combination of the target data (3 levels) and correlation
coefficient set (4 levels), the coefficient estimation experi-
ment was repeated 3 times. Thus, a total of 3 � 4 � 3 = 36
responses were collected per visualization, and thus a total
of 36 � 3 = 108 responses was collected in the task.

Prior to the main task, training sessions were given to the
participants. The training sessions had the same conditions
as the main task, but the response was not recorded and par-
ticipants could check the answer and train themselves. A
training session consisted of 12 responses, and users could
request more training sessions if needed. On average users
performed around 1 to 2 training sessions per visualization.

6.2 Results

In both tasks, we recorded the task completion time (i.e., the
time between the appearance of a visualization and the
user’s answer in milliseconds) and the error rate of each
user’s answers (i.e., the absolute difference between the
user’s response and the chosen coefficient).

6.2.1 First Task: Two Attributes

The task completion time and error rate were analyzed
using a 4 � 4 (4 visualization methods � 4 correlation coeffi-
cient sets) repeated measures ANOVA. Bonferroni‘s pair-
wise comparison was used for all post hoc tests.

Task Completion Time. Fig. 10a shows the task completion
time of all correlation coefficient sets for each visualization
method. There was a significant main effect by visualization
type (F3;35 = 13.207, p < .001). Post hoc tests revealed that
the task completion time of scatterplots (mean � SD: 3,970
� 265 ms) was significantly lower than the task completion
times of all other conditions (PCP: 4,875 � 271; AH: 5,411 �
354; PHP: 5,255 � 266). We also found a significant main
effect by correlation coefficient set (F3;35 = 35.310, p < .001),
with post hoc tests showing that the participants responded
to the HN (4,276 � 229) and HP (4,268 � 200) conditions sig-
nificantly faster than to the LP (5,439 � 323) and LN (5,527�
300) conditions. This indicates that the participants took less
time to respond to more strong patterns with positive/nega-
tive correlations.

There was also an interaction effect between visualization
type and correlation coefficient set (F9;35 = 3.312, p = .001).
For further analysis, we performed a one-way repeated
measures ANOVA (4 correlation coefficient sets) for each
visualization method. The result of the pairwise comparison
of the four correlation sets are shown in Fig. 10b. Each

visualization showed a slightly different trend. In PCP, HN
outperformed all other conditions, mostly because the cross-
ing patterns were most distinct in that condition. On the
other hand, because there are no crossing patterns in PHP,
such a trend did not appear for PHP.

Error Rate. Fig. 11a shows the error rate of all correlation
coefficient sets for each visualization method. There was a
main effect by visualization type with regard to the accu-
racy of the responses (F3;35 = 46.618, p < .001). From post
hoc tests, it was found that the error rate of scatterplots
(mean � SD: 0.093 � 0.005) was significantly lower than the
error rates of all other conditions (PCP: 0.178 � 0.007; AH:
0.211 � 0.011; PHP: 0.140 � 0.007). In addition, the error rate

Fig. 10. Results regarding task completion time in the first task. (a)
Results by visualization method and correlation coefficient set. Error
bars indicate the standard deviation of the measured mean. (b) Signifi-
cance of the difference between correlation coefficient sets for each
visualization. An asterisk (*) in the table indicates that the pairwise differ-
ence is significant (p < :05).

Fig. 11. Results regarding error rate in the first task. (a) Result by visuali-
zation method and correlation coefficient set. Error bars indicate the
standard deviation of the measured mean. (b) Significance of the differ-
ence between correlation coefficient sets for each visualization. An
asterisk (*) in the table indicates that the pairwise difference is significant
(p < :05).
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of PHP was significantly lower than the error rates of PCP
and AH. There was also a significant main effect by correla-
tion coefficient set (F3;35 = 100.049, p < .001). Post hoc tests
indicated that the error rates in the HN (0.099 � 0.004) and
HP (0.106 � 0.006) conditions were significantly lower than
those of the LN (0.195 � 0.007) and LP (0.221 � 0.009) condi-
tions. Furthermore, LN showed a significantly lower error
rate than LP.

An interaction effect between visualization type and cor-
relation coefficient set was observed (F9;35 = 7.385, p < .001).
For further analysis, we performed a one-way repeated
measures ANOVA (4 correlation coefficient sets) for each
visualization method. The result of the pairwise comparison
of the four correlation sets is shown in Fig. 11b. Only in AH
did LP significantly underperform LN, whereas the other
visualizations did not show such notable differences.

6.2.2 Second Task: Multiple Attributes

The task completion time and error rate were analyzed
using a 3 � 4 � 3 (3 visualization methods � 4 correlation
coefficient sets � 3 positions of target attribute) repeated
measures ANOVA. Bonferroni‘s pairwise comparison was
used for all post hoc tests.

Task Completion Time. There was a significant main effect
by visualization type (F2;35 = 23.702, p < .001), with post
hoc tests showing that the task completion time of PHP
(mean � SD: 4,831 � 244 ms) was significantly lower than
the task completion times of the other two methods (PCP:
6,970 � 331; AH: 7,144 � 419) ( Fig. 12a ). We also observed
a main effect by correlation coefficient set (F3;35 = 11.656,
p < .001). The response was significantly faster in the
highly correlated conditions (HN: 5,974 � 267; HP: 5,945 �
293) than in the other two conditions (LN: 6,675 � 276; LP:
6,664 � 287). Position of target attribute also showed a

significant main effect (F2;35 = 64.835, p < .001). The pair-
wise differences in task completion time between any two
positions were all significant, while the response time
increased as the distance between the pivot and the target
attribute became bigger (first: 4,851 � 178; second: 6,792 �
294; third: 7,302 � 372.

Interaction effects were also observed. Visualization type
and position of target attribute showed a significant interac-
tion effect (F4;35 = 20.798, p < .001), as did correlation set
and position (F6;35 = 2.995, p = .008). For further analysis of
the interaction effects, we performed a 4 � 3 (4 correlation
coefficient sets � 3 positions of target attribute) repeated
measures ANOVA for each visualization. As shown in
Figs. 12b, 12c, 12d , in PCP and AH, correlation coefficient
set and position of target attribute both showed a significant
main effect in addition to the interaction effect between
them. Meanwhile, in PHP, only correlation coefficient set
showed a significant main effect, whereas task completion
time was not affected by position of target attribute.

Error Rate. There was a significant main effect by visuali-
zation type (F2;35 = 144.112, p < .001). Post hoc analysis
revealed that the error rate of PHP (mean � SD: 0.149 �
0.011) was significantly lower than the error rates of the
other two visualizations (PCP: 0.422 � 0.018; AH: 0.487 �
0.018) while PCP significantly outperformed AH ( Fig. 12e ).
Position of target attribute also had a significant main effect
(F2;35 = 122.976, p < .001). According to the post hoc analy-
sis, all position pairs showed a significant difference, while
the error rate increased as the distance between the pivot
and target attributes increased (first: 0.215 � 0.010; second:
0.390 � 0.014; third: 0.452 � 0.016). No significant main
effect by correlation coefficient set was observed (F3;35 =
.029, p = .993).

Multiple interaction effects were also observed. Interac-
tion effects between visualization type and position of target

Fig. 12. Performance evaluation results of the second task. Error bars indicate the standard deviation of the measured mean. (a) Response time of
the visualization by position of the target attribute. (b)-(d) Response time of each visualization by position of the target attribute and correlation coeffi-
cient set ((b) PCP, (c) AH, and (d) PHP). (e) Error rate of the visualization by position of the target attribute. (f)-(h) Error rate of each visualization by
position of the target attribute and correlation coefficient set ((f) PCP, (g) AH, and (h) PHP).
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attribute (F4;35 = 24.503, p < .001), between correlation coef-
ficient set and position of target attribute (F6;35 = 15.351, p <
.001), and between all of the three within variables (F12;35 =
4.827, p < .001). For analysis of the interaction effects, we
performed a 4 � 3 (4 correlation coefficient sets � 3 posi-
tions of target attribute) repeated measures ANOVA for
each visualization. As shown in Figs. 12f, 12g, 12h , in PCP
and AH, we observed a significant main effect by position
of target attribute and the interaction effect between it and
correlation coefficient set. By contrast, in PHP, only correla-
tion coefficient set showed a significant main effect, imply-
ing that position of the target attribute did not play a
significant role in the performance regarding accuracy.

7 DISCUSSION

The first task shows that in terms of the accuracy of the
responses , PHP outperforms PCP and AH, but PHP is out-
performed by scatterplots in the correlation coefficient esti-
mation task. We suspect that the performance difference
comes mainly from the innate difference in the effectiveness
of the visual encodings, i.e., crossing patterns in PCP and
AH, color in PHP, and position in scatterplot. Other factors
could have affected the performance. While training could
offset the effect, the well-known scatterplot might have
advantages over the other unfamiliar visualizations. Fatigue
from the first task may have negatively affected the perfor-
mance in the second task, in addition to the second task
being relatively more complicated than the first task. There
was mostly no tradeoff between response time and error
rate (faster performance does not increase the error rate).
One exception to this was a faster response time in scatter-
plots under positive correlation conditions compared with
negative conditions. In scatterplots, the response time of HP
was faster than that of HN, and LP was faster than LN. But
there was no significant difference in the performance
between the two pairs. Although we have no empirical evi-
dence, we suspect that the difference in response time is
caused by participants’ being more familiar with scatter-
plots with positive correlations. We think a more thorough
analysis of this issue can be a potentially interesting future
topic.

Results of the second task show that the positioning of
attributes in PHP does not influence the performance of the
correlation retrieval task, unlike other conditions in which
the performance severely decreases when the target and
pivot attributes are not adjacent. The empirical results imply
that PHP mitigates one of the two main innate limitations of
PCP we previously stressed—i.e., the difficulty in estimat-
ing relationships between non-adjacent axes. AH, which
that also utilizes histograms to deal with scalability did not
outperform PCP and performed worse than PHP. Crossing
and cluttering of bars remain in AH, even though histo-
grams are used to deal with the scalability issue of PCP,
implying that AH does not fully overcome the first limita-
tion of PCP we mentioned —i.e., the cluttering of polylines
caused by multiple crossings. Compared with AH, PHP uti-
lizes a totally different visual channel, i.e., color, to deal
with the cluttering problem, and thus it is free from the clut-
tering by crossing line patterns. We expect that when the
number of items further increases, AH will perform better

than PCP because of the effectiveness of histograms in deal-
ing with scalability.

When analyzing multidimensional data, it is a common
approach to start by inspecting each attribute individually
(1D) and then continue by examining the relationships
between two or more attributes in order to obtain insights
in higher dimensions [38]. PHP supports this data explora-
tion process. Each histogram in PHP shows the distribution
of one dimension, which is hard to see in PCP or SPLOMs.
In PHP, users can select a pivot attribute and observe all the
data from the perspective of that attribute using the attrib-
ute’s colormap. After studying the 1D histograms, users can
explore the relationships between two or more attributes
using the color mapping applied to all other histograms.
The implicit connection via colormapping reveals relation-
ships between the pivot attribute and other attributes. Users
can move on to select another attribute as a pivot, group
and reorder similar attributes for higher dimensional analy-
sis, or zoom in further to inspect a small group of items of
interest in an attribute.

Throughout the paper, we fixed various parameters that
could affect the performance of the visualization—e.g., the
set of colors of the color scheme, the number of colors used
in the color scheme, and the number of bins of the histo-
grams. Measuring the effects of changing these parameters
could be an interesting future research direction. Through-
out the paper and user study, we used a blue-red color
scheme for PHP. Studying how a different color scheme
might affect task performance in correlation estimation
could also be interesting. In addition, the number of distinct
colors was fixed at a relatively small value (10) throughout
the paper. The number of discriminable hues mapped onto
small, separated regions is known to be moderate, i.e., fewer
than 10. While using relatively few colors can still help users
grasp the overall trend in the data, it could potentially over-
simplify the information in the data, hindering the discov-
ery of more diverse and precise patterns of colors in the
visualization. However, such a detailed exploration is possi-
ble with the original PCP visual encoding, i.e., polyline
representation. Investigating the effect of the number of col-
ors in terms of perceiving a data distribution is an appealing
future research topic. Increasing the number of colors could
reveal different structures in the data, but it could become
harder to discern different colors, and individual bars might
become too small to interact with.

The number of bins affects the shape of a histogram,
which is related to how the colormap is rendered. We
expect that changing the number of bins should not greatly
influence users’ task performance in estimating correlation,
as they examine the overall color distribution. However,
since the shape of the colormap changes, it could influence
some tasks, such as finding outliers or a group of similar
items. Since categorical attributes do not carry any ordering
information, our rank-based approach cannot be directly
applied to categorical attributes. It would be interesting to
study how to harmoniously combine the ranking channel
and the identity channel in using color mappings for multi-
dimensional data analysis. Also, while we proposed various
approaches to dealing with skewed histograms, such as
using colors based on ranking or utilizing two-level zoom-
ing interactions, they all require some level of user input.
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Combining the proposed approaches with other analytic
methods (e.g., log transformation) that deals with the skew-
edness of a distribution would be an interesting direction.
Finally, PHP can be integrated with other related visualiza-
tions similarly to how PCP has been integrated with other
visualizations (e.g., scatterplots).

8 CONCLUSION

We introduced PHP, a novel visualization technique desig-
ned to overcome the innate limitations of PCP. PHP utilizes
color-coded, stacked-bar histograms to show the relation-
ships between attributes without the issue of cluttering and
regardless of the distance between the attributes. With PHP,
users can discover interesting items using colored stacked-
bar histograms: Similar colors gathered in a small region
suggest clusters of data items that follow a certain trend,
and salient colors from the overall color distribution suggest
outliers. In addition, PHP provides interactions to help
users investigate the details of histograms in a limited
screen space: two-level zooming (i.e., focus+context zoom-
ing and clamp zooming), ghost bars, and a UI widget of the
color panel. Following the Visual Information-Seeking Man-
tra, polylines are used to display the details of focused data,
while color-coded histograms provide the overview. We
demonstrated how PHP can be used on a real-world dataset
in a use case. We also tested the performance of PHP in cor-
relation coefficient estimation tasks. The results showed
that PHP correlation estimates were consistent regardless of
the distance between attributes.
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