
PolySquare: A Search Engine for 3D Models with Tag
Propagation

Minji Kim
mjkim@hcil.snu.ac.kr

Seoul National University

Junhoe Kim
jhkim@hcil.snu.ac.kr

Seoul National University

Gwanmo Park
gmpark@hcil.snu.ac.kr

Seoul National University

Jinwook Seo
jseo@hcil.snu.ac.kr

Seoul National University

ABSTRACT
Searching for desired 3D models is not easy because many of them
are not well labeled; annotations often contain inconsistent informa-
tion (e.g., uploaders’ personal way of naming) and lack important
details (e.g., detailed ornaments and pattern) of each model. We
introduce PolySquare, a search engine for 3D models based on tag
propagation—the process of assigning existing tags to other similar
but unlabeled models considering important local properties. For
instance, a tag ‘wheel’ of a wheelchair can be spread out to other
objects with wheels. Furthermore, PolySquare allows people to in-
teractively refine the search results by iteratively including desired
shapes and excluding unwanted ones. We evaluate the performance
of tag propagation by measuring the precision-recall of propaga-
tion results with various similarity thresholds and demonstrate the
effectiveness of the use of local features. We also showcase how
PolySquare handles the unrefined tags through a case study using
real 3D model data from Google Poly.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Information systems→ Search interfaces; •Computingmethod-
ologies→ Visual content-based indexing and retrieval; Machine
learning approaches;

KEYWORDS
3D tagging, 3D text annotation, 3D model search, 3D data retrieval,
Neural networks

ACM Reference format:
Minji Kim, Junhoe Kim, Gwanmo Park, and Jinwook Seo. 2020. PolySquare:
A Search Engine for 3D Models with Tag Propagation. In Proceedings of 25th
International Conference on Intelligent User Interfaces, Cagliari, Italy, March
17–20, 2020 (IUI ’20), 11 pages.
https://doi.org/10.1145/3377325.3377484

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IUI ’20, March 17–20, 2020, Cagliari, Italy
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7118-6/20/03. . . $15.00
https://doi.org/10.1145/3377325.3377484

1 INTRODUCTION
The need for searching for 3D models has increased in recent years
due to the fast growth of the AR/VR field and increase of people’s
interest [2], spawning various free or paid 3D model gallery web-
sites. While many search sites adhere to keyword search, the tags
on the models often contain unnecessary or insufficient informa-
tion [30]. For instance, tags are often used for personal purposes
such as indicating the purpose or inspiration of the uploader which
does not describe the model itself. Furthermore, tags can be too
general; for example, a tag ‘guitar’ does not provide enough details
about the shape of a guitar model compared to other tags such
as ‘electric/acoustic.’ Such lack of meaningful tags makes people
hesitate to use keyword search and resort to manually browsing
through the 3D model gallery until they find the models they want.

Automatically assigning appropriate tags from labelled models
to unlabelled ones can mitigate this problem by enriching the text
annotation. This process is called tag propagation [9, 19]. Goldfeder
et al. and a few studies [16, 28, 31] adopted the concept of tag prop-
agation for 3D data for the first time; these studies annotated a 3D
model with the tags of its 15 most geometrically similar neighbors.
However, since such a method only considers the overall geometric
distance between models, tags denoting a local structure can be
propagated incorrectly; for example, a chair with wheels and a chair
without wheels look similar overall, but a tag ‘wheel’ from the first
one should not be propagated to the second one. In contrast, there
is an opposite case where tags should be propagated even though
two models are not similar. For example, a chair and a locker are
dissimilar overall but a tag ‘wheel,’ from the chair should be prop-
agated to the locker if both have the similar local structure, i.e.,
wheels.

We propose PolySquare, a search engine for 3D models using tag
propagation: sharing tags among nearest neighbors with respect to
both global and local features. Figure 1 shows the pipeline of tag
propagation in PolySquare. PolySquare propagates tags between
similar models using global features, i.e., full-body propagation.
Then, per-part propagation attaches tags to the models whose local
properties are similar to each other. We also adopt a language model
to detect and remove anomalous or irrelevant tags, reducing false
positives during the propagation process. To diminish the impact of
mispropagated tags, the search interface of PolySquare allows users
to refine search results iteratively through sorting and filtering. Tag
propagation can be used by the search site managers who want to
enhance the search quality, or the researchers who need 3D models
with rich text-annotations. Consumers of the 3D models can find

324

https://doi.org/10.1145/3377325.3377484
https://doi.org/10.1145/3377325.3377484

IUI ’20, March 17–20, 2020, Cagliari, Italy

Figure 1: The pipeline of PolySquare. The tag propagation process contains 4 steps: full-body propagation, part-segmentation,
per-part propagation, and anomaly detection. (a) Before propagating tags, only the purple chair has the tags ‘chair’ and ‘wheel’.
(b) In full-body propagation, the red chair copies tags from the purple chair, since the global features of twomodels are similar.
(c) Part segmentation and feature extraction are conducted beforehand. PolySquare loads the features of each model. (d) In
per-part propagation, the locker gets tags of the purple chair, since they have wheels in common. (e) When searching for a
chair, the locker also appears in the search results. Users can filter out the locker with a simple click interaction. — Furniture
icons designed by Smashicons from Flaticon.

their desired models faster using the system, and the authors of the
models get recommended new tags to increase the search rate of
their models.

We summarize our contributions as follows:

1. We design and develop PolySquare, the search engine that
can perform a 3D model keyword search using the propa-
gated tags.

2. We introduce tag propagation using a 3D similarity measure
of local features extracted by a deep learning model. We also
utilize a language model to prevent attaching irrelevant tags.

3. We designed an intuitive interaction to enable users to im-
prove the quality of search results by iteratively adding the
wanted objects and deleting the unwanted ones.

4. Through a precision-recall experiment, we show the useful-
ness of our tag propagation and analyze its performance in
regards to various similarity thresholds.

5. Through a case study using real 3D model data from Google
Poly, we show that PolySquare can be adapted to the existing
wild dataset with various tags.

2 RELATEDWORK
Our work is relevant to both tagging 3D models and 3D search
methods. In this section, we summarize previous research on these
two categories.

2.1 3D Text Annotation
Most of the studies on automatic 3D text annotation were about the
effective and automatic class labeling of 3D data. Research on 3D
text annotation can be classified under two large groups: interactive
tools and automatic labeling. The first group includes research on

the interactive tools to annotate 3D data efficiently, and the second
one covers studies to label the 3D data automatically.

Ponchio et al. [35] suggested an interactive labeling through a
two-pass rendering solution. Julien Valentin et al. [42] developed
an interactive tool that can correct errors during scene segmen-
tation by reflecting user labeling in real time. Papaleo et al. [32]
proposed an interactive tool for annotating 3D data that allows the
hierarchical semantic-driven tagging. These interactive tools that
require users to annotate the model themselves are not suitable for
tagging existing massive 3D data since they require a lot of time
and effort.

Yi et al. [47] used both automatic labeling and human verification
to enable annotation with minimal manual manipulation. When
users annotated the model, the rest of the similar shapes were
annotated automatically, and the labeling model was trained again
when users verify the results. Many other tools have been developed
to automatically perform semantic labeling, such as Koppula et
al.’s semantic labeling for 3D point clouds of indoor scenes [25],
Kalogerakis et al.’s 3D mesh segmentation and labeling method,
and more [22, 39]. These tools attach predetermined labels to the
separated parts. Therefore, most of the studies supporting automatic
labeling do not use customizable tags, and only assign a name of
the part to the model. In other words, it is difficult to borrow and
apply diverse tagging methods used in general 3D gallery sites.
Our work intends to enhance the text annotation of 3D data by
accommodating user-defined tags, as well as simple labels.

Goldfeder et al. derived a tag propagation technique from the
research area of image search for 3D models for the first time [9,
16, 17]. They utilized the existing geometric shape descriptor to
propagate tags to similar objects. This attempt, however, could miss
the tags that reflect the local properties of the object. Ohbuchi et
al. [31] and Li et al. [28] also attempted to use similar methods

325

PolySquare: A Search Engine for 3D Models with Tag Propagation IUI ’20, March 17–20, 2020, Cagliari, Italy

to enhance the text annotation of the data. Ohbuchi et al. used
the existing class labels as tags, which do not reflect the detailed
shape properties of the objects. These two studies attempted to use
mixed features (global + local) through statistical feature extraction.
However, they did not used local features to compare parts of each
model. Furthermore, there was no elaborate anomaly treatment for
irrelevant keywords other than assigning more weights to a title
and tags than a description of the model. Therefore, the propagation
could still assign wrong tags. Our work adopts the same concept
of tag propagation, but enhances the robustness of the process
by extracting both global and local features using a deep learning
model. We also detect anomalies in a tag propagation process to
reduce the number of irrelevant tags.

2.2 3D Retrieval and Searching
A lot of studies presented various search methods to increase the re-
trieval rate and the efficiency of the 3Dmodel search. Min et al. [30],
Bustos and Li [4, 27] compared the effectiveness of 3D searching
methods. Their research focused on the content-based search rather
than the keyword search, citing the lack of text annotation in 3D
data as a main reason for a low performance of keyword search.
Because of the lack of tag in 3D data, researchers presented and
analyzed various 3D retrieval methods that do not depend on text
annotations. Sketch, image, and shape search are representative
content-based search [1, 18, 44, 46]. In addition, researchers tried
to discover 3D features that can be utilized to improve the search
efficiency. Recently, many studies performed feature extractions
using deep learning. Using deep learning models, Su et al. [41]
extracted 3D features using multi-view rendered images, and many
researchers including Qi et al. used point clouds to generate feature
vectors [36, 37, 45]. Hanocka et al. and Feng et al. introduced net-
works for 3D mesh representation [13, 20]. These studies improve
the efficiency of the 3D model search, but require more interactions
than the simple keyword search, such as preparing a 3D shape or
making a separate 2D sketch. PolySquare uses keyword search in-
stead of shape or sketch search, and utilizes a deep learning model
to extract the features, which can be used to measure similarities
between 3D models.

Some studies have attempted to deal with 3D search efficiency
from the users’ point of view rather than a low-level analysis such
as retrieval rate. Funkhouser et al. [15] introduced a 3D search en-
gine that supports both keyword and sketch-based retrieval. Users
can sketch the wanted object or type a keyword to search for a
model and use the results to find similarly shaped models. There
are also studies that allow 3D retrieval to be performed during
modeling process, so that the intermediate results can be used for
retrieval. Fan et al. [12] proposed a shadow guide and sketch based
modeling. According to the drawing of the user, the search engine
finds similar models and projects them on the screen as a shadow
guide. Chaudhuri et al. [6] linked local parts of 3D models to seman-
tic words (e.g., dangerous, scary, and strong) reflecting the intent
people may have when modeling 3D objects. Users can select the
component that is appropriate to the object they are making, con-
sidering the strength of semantics through the keywords. These
studies are meaningful in that they drive 3D local parts to reflect
the user’s modeling intention. We take a user-centered approach

that allows users to directly refine search results and interact with
3D models by simple interactions (click and drag).

3 TAG PROPAGATION
We use the tag propagation method to enhance the existing text
annotations for 3D models. We choose which tags to share based on
how similar the shapes of the models are using both global and local
features. When considering local features, PolySquare segments
the models and selects which part will be used for the propagation
(Figure 1). The propagation method is implemented and tested with
two different thresholds: (1) count-based threshold, which reflects
n most similar models. (2) score-based threshold, which propagates
tags with a distance smaller than k. Also, to prevent false positives,
we developed a language model using GloVe [33] word vectors to
remove anomalies. We used about 400,000 words encoded using
GloVe, trained on the Wikipedia corpus. The language model treats
words that are not included in the list of GloVe vectors as out-of-
vocabulary (OOV), and it considers the tags not related to others
attached to the same object as anomalies and excludes them from
the final tag group.

Algorithm 1 Lazy Tag Propagation

1: procedure Lazy Tag Propagation(threshold)
2: initialize feature dictionary D of the models
3: for model in database do f eat = D[model]
4: for id in D do
5: distance = MSE(f eat − D[id])
6: end for
7: sort the distances
8: if Thresholding by nearest neighbors then
9: ids = n most similar models (n = threshold)
10: update lazylist ← ids
11: else if Thresholding by distance then
12: ids = models if distance < threshold
13: update lazylist ← ids
14: end if
15: end for
16: for id in lazylist do
17: for _id in lazylist[id] do
18: lazylist[id] = lazylist[id] + lazylist[_id]
19: end for
20: exclude anomalies from tags
21: update tags of the ids
22: end for
23: end procedure

3.1 Lazy Tag Propagation
Lazy propagation, also known as call-by-need, is a strategy to delay
the execution until the values are needed [43]. If we naively traverse
the models to propagate tags, the result differs based on the order
of traversal. This is because the distribution of the tags continues
to change during the traversal. Therefore, we introduce a lazy tag
propagation algorithm to update tags only after each iteration ends.

Full-Body Propagation Lazy tag propagation is executed as in
Algorithm 1. We first initialize the feature dictionary of 3D models.

326

IUI ’20, March 17–20, 2020, Cagliari, Italy

Then, for all the models in the dataset, we findnmost similar objects
(or the objects with higher similarity score than the threshold) and
store their id’s in the lazy list. Here, the number of similar objects (or
the similarity score) is a hyper parameter. After updating the lazy
list, we iterate over it, and for each nearest neighbor’s id, we add
lazylist[id] to the existing id list. That is, all the nearest neighbors
of the nearest neighbors are also included in the results. Finally, we
store the propagated tags to the database. The time complexity of
the lazy tag propagation is O(n2).

Per-Part Propagation PolySquare segments each object based
on its class (i.e., chair, airplane, laptop, knife, and guitar) and per-
forms per-part propagation only when a notable part with dis-
tinctive characteristics exists in the object. In order to select an
important part without prior knowledge about the relationship
between the object and its tags (e.g., whether a tag ‘wheel’ refers to
the leg or the armrest of a chair), we compute average normalized
distance from each segmented part to the corresponding parts of
other objects of the same class. If the smallest distance of a part of
the target object is less than the distance to the nearest neighbor
selected from the full-body propagation and is below the threshold
(≈0.5), we consider that part as significant. The tag propagation
process for each significant part follows the same process as in
Algorithm 1.

3.2 Feature Extraction and Segmentation
We explain a detailed method for extracting the features of 3D
objects used throughout PolySquare, and then present how we
segment local parts of 3D objects. We use Multi-View Convolu-
tional Neural Network (MVCNN) [41] for extracting features of 3D
objects. The view-based descriptor is easy to train using the pre-
trained model of existing 2D image corpus, and the computation
is efficient because even a complex model can be represented as a
constant size image. MVCNNN inherited the previous view-based
descriptors [7], and used projected views of 3D models in differ-
ent directions. Unlike when a person decided important features
by hand, MVCNN used deep learning to extract the features and
showed better performance [24]. In recent years, various methods
for 3D feature extraction have been tried [14]. PolySquare uses a
light-weight MVCNN model with relatively stable performance.

The model consists of two stages of CNNs. The first stage is the
image-based CNN, and we use ResNet-18 [21] as a backbone. This
network is pre-trained on ImageNet [38] images. The outputs of
each of the 12 multi-view images are aggregated in a view-pooling
layer using element-wise maximum operation and sent to the sec-
ond network. The second step is a directed acyclic graph, and we
also use ResNet-18 from [21]. We use the penultimate layer after
ReLU non-linearity as a shape descriptor. For generating input
multi-view images, we render the models from 12 view angles: ro-
tated by 30 degrees around the y axis, using Blender [8] rendering
tool. The rendering camera is pointing towards the center of the ob-
ject and about 30 degrees above the ground. The model is trained on
the Modelnet40 [48] dataset using an Adam optimizer [23], with a
learning rate of 5e-5 inspired by the original paper [41]. We assume
3D models to be upright, and normalize the size and the position
of these models. Feature vectors of the models are pre-computed as
512 dimensions and stored in the database.

In order to use the features of the local parts of the data in
tag propagation and a filtering method, we employ PointNet [36]
to segment the 3D models into local parts. We use PointNet for
its robustness to input perturbation and its simple but efficient
network. The part segmentation concatenates the local and global
features of the model, generated from the fully connected layers.
(The global feature here is the output of the max-pooling layer)
Then the network predicts the scores for each point, and these
scores are used to determine the class of the points. Since we use
3D mesh data for the tag propagation input, we sample the input
points from the face centers of the model. We sample 2,500 unique
random points from the model, and segment class for each sampled
point. The rest of the points follow the class of the nearest sampled
point. The model is trained on ShapeNetCore [5] using the Adam
optimizer [23] with a learning rate of 1e-3 as denoted in the original
paper [36]. All the segmented parts are generated beforehand, and
stored in the file system.

3.3 Language Analysis
We use pre-trained GloVe [33] word vectors to exclude unrelated
tags from a propagation process. The GloVe vector is a powerful
word embedding method, where a dot product of two vectors equals
the logarithm of the words’ probability of co-occurrence. Other pop-
ular models Bert [10] and Elmo [34] are not suitable for embedding
tags because they do dynamic embedding.

Using the word vectors, we exclude tags that are not in the
dictionary (i.e., meaningless indices, username of the author) and
find anomalies from the tag group. We use two methods to find
the anomalies from the words: one is K-Means [29] clustering, and
the other is classifying the tag to be safe if the distances from all
other tags are below a certain level. K-Means clustering performed
better than other clustering algorithms such as DBScan [11]. This is
because tags corresponding to a single 3D model are often grouped
in a similar sense, with a bundle of three to five such topics. In
K-Means algorithm, we fix the value of k to 2 and consider the
larger cluster to be the main one. Adjusting the k value from 2
to 8, the smaller k value shows better performance because there
are not many tags in the experimental data. The tags are classified
as anomalies if each feature has a larger distance from the cluster
center than the threshold. The threshold value is set to 6 by an
empirical experiment.

The latter method is more flexible in judging anomaly because
it classifies tags to be safe when they are close to just one other
tag. The threshold value for distance is set to 6 by experiment,
same as for K-Means. We compared the performance of K-Means
clustering with the latter classifying method and found that the
the performance degrades when the number of tags is small. This
is because the cluster center does not reflect the value of safe tags
if the number of words is small. We chose the second method,
heuristic that filters the anomaly in a more conservative way to
increase recall of search results. The remaining false positives are
expected to be excluded through user interaction. The language
model phase thus filters out extraneous words not specified in the
dictionary.

327

PolySquare: A Search Engine for 3D Models with Tag Propagation IUI ’20, March 17–20, 2020, Cagliari, Italy

Figure 2: Searching interface (a) Overview—The search re-
sults appear as a list. The left of the screen is a filter panel.
Users can either filter-in or out by clicking the button. Each
model has the tags below the model. (Blue: original tag, Pur-
ple: propagated tag, Green: propagated tag from the part) (b)
Detail view—The model and its parts can be rotated using
the left mouse button and drag interaction. The model can
be downloaded as obj format, and each part can be added to
the filtering panel using the ‘Add Filter’ button.

4 SEARCHING INTERFACE
Based on the method described in this paper, we designed a search
interface for users to interactively improve search results (Figure 2).
When users query a keyword, PolySquare sends results that match
one of their attributes (e.g., title, description, tags, augmented tags)
against the keyword. Through the filter in/out interaction, the users
can refine the results to what they want. In this section, we describe
the components of the interface and interactions.

4.1 Overview and Detail
In the overview, the interface displays search results in a grid view
with four models in each row (Figure 2(a)). Users can scroll down
to explore the results and find a desired model. Also, users can
turn on and off the propagation mode that determines whether

Figure 3: Tagging interface for building a ground truth
dataset. For the consistency of the dataset, we took the fol-
lowing tagging process: First, we attach tags to 20% of the
models respectively. Next, we compared the differences and
made a consensus of criteria for associating them. Finally,
we encode the rest of the models according to the rules.

to use the propagated tags in a searching process. The detail-view
(Figure 2(b)) shows the model and its local parts with tags. Users can
rotate models freely by dragging with the right mouse button and
download them in a .obj format. All tags appear in both the overview
and the detail view. The tags that the model originally had appear
in indigo color by default. While the propagation mode is on, two
types of tags are added without duplication. The tags propagated
from similar models through full-body propagation are added in
purple, and the ones propagated by per-part propagation are added
in green. Lastly, the tags identified as anomalies by PolySquare’s
language model are shown in red.

4.2 Iterative Search
To complement failure cases where the incorrect tags are attached
to the models, the interface supports the iterative refinement of the
search result using filter-in/out operations. When users encounter
unsatisfactory results from keyword search, they can register de-
sired parts (or full-body) of the object to filter-in, and the unwanted
ones to filter-out as filters. The filter-in operation adds models that
are similar to the filters, although they were not included in the
previous result. Then it sorts the results according to the shapes of
the filters. The more similar the shape is to the filters, the earlier it
appears on the results. On the other side, the filter-out operation
excludes the models that are similar to the selected filters. In a
filter-in process, PolySquare finds 30 nearest models for each filter
based on the feature representation. They are included into the re-
sult without duplication before sorting them. Likewise, PolySquare
finds five nearest models to exclude when users apply the filter-
out operation. For the filtering operation, users can add the whole
model and its parts to the filter panel by clicking on the ‘Add filter’
button. They can also add a specific part separately to the list in
the detail view. In the filtering panel on the left side, users can ad-
just the filtering priority by dragging the model cards. Once users
have determined the filter models and their order, they click the
‘filter-in/out’ button.

328

IUI ’20, March 17–20, 2020, Cagliari, Italy

Table 1: The number of models and the parts for each cate-
gory, and a list of the tags used in evaluations.

models # parts tested tags
Airplane 500 4 propeller, high_tail
Chair 500 4 4legs, wheels, recliner, bar
Guitar 500 3 v-head
Knife 392 2 curved, dart
Laptop 445 2 -

Table 2: Cohen’s κ coefficient of the tagging result. Four
tags are marked as ‘Very Good’, and the rest of the tags are
marked as ‘Good’. The tags with the coefficient value below
0.75 are not used in evaluations, except the first precision-
recall test.

tag category Cohens’s κ
coefficient

strength of
agreement

high_tail Airplane 0.953 Very Good
propeller Airplane 0.78 Good
4legs Chair 0.931 Very Good
wheels Chair 0.962 Very Good
bar Chair 0.839 Very Good
recliner Chair 0.701 Good
v-head Guitar 0.931 Very Good
curved Knife 0.615 Good
dart Knife 0.872 Very Good

5 EVALUATION
We evaluated how tags were propagated using ShapeNetCore [5], a
large repository of 3D data (55k objects) that is actively used in 3D
retrieval research. From the entire ShapeNetCore dataset, we chose
five categories (airplane, chair, guitar, knife, and laptop) to use for
the evaluation since the segmentation algorithm, PointNet [36],
that we used to segment the local parts of each object, was known
to perform the best among those categories. The distribution of the
data is shown in Table 1. We initially tested ShapeNetSem [40] as
it contains richly annotated data. However, compared to ShapeNet-
Core, ShapeNetSem is smaller and densely annotated. When we
extracted the models belonging to the five categories, the number
of models in each category was below 100. We decided to annotate
the ShapeNetCore data with the labels given in the ShapeNetSem
dataset, and as Ohbuchi et al. [31] used class labels to annotate the
dataset, we used the names of the class and their synonyms, along
with other related words used in Google Poly.

We selected the tags that represent a local feature of the object as
test tags. For instance, in the Chair category, ‘4legs, wheel, bar’ are
the tags that show the legs’ property of the chair, and ‘recliner’ re-
flects the angle of the backrest. The tested tags are given in Table 1.
We generated the ground truth data for the test tags by encoding
all the models of ShapeNetCore according to a specific encoding
rule, and then used it to measure the precision-recall of the tag
propagation. We implemented a tagging web page for encoding
the models (Figure 3). We did not include the test tags for the Lap-
top category because the shapes of the models are relatively not

Figure 4: Comparison between the F1 scores of the count-
based threshold and the score-based threshold for each tag.
In all cases, count-based thresholds showed a higher perfor-
mance than score-based ones.

distinctive. Two authors participated in the tagging process. Af-
ter finishing encoding 20% of the whole data independently, we
compared the results and confirmed the tagging criteria. Cohen’s κ
coefficients [26] for each tag are reported in Table 2. Using the con-
sensus criteria, we tagged the rest of the data. Since the percentage
of tagged objects vary from dataset to dataset, we arbitrary attached
the test tags to 30% of the ground truth data so that propagation
can be made.

In this section, we look into the performance differences based
on the tag propagation method, the features used, and the use of
the language model. Then, we report how precision-recall changes
after using our iterative search.

5.1 Tag Propagation Thresholds
We tested and compared both methods using (1) the number of
similar models (count-based) and (2) the similarity score (score-
based) to propagate tags. The former method is determining which
tags to propagate based on a certain number of similar models. The
latter method is to propagate tags by referencing the models with
a similarity score higher than a certain threshold.

We measured precision-recall of the propagation while changing
the thresholds. The count-based thresholds ranged from 1 to 30,
and the score-based thresholds ranged from 0 to 20. The F1 score
is calculated based on the point where two graphs of precision
and recall meet. This is to set a proper threshold value considering
both precision and recall. Tables of detailed thresholds and corre-
sponding precision-recall values are attached as the supplementary
material.

Figure 4 presents the difference in F1 score for each tag with
a similarity number and score. Propagating tags using the count-
based threshold performs much better than using the score-based
thresholds. In the case of score-based thresholds, the precision-
recall graph showed a steep slope because the distribution of simi-
larity scores of objects corresponding to the tag is uneven. Since
the performance of the count-based threshold was obviously better
than the score-base, we used the count-based threshold by default
for later experiments . The best performing tags in count-based

329

PolySquare: A Search Engine for 3D Models with Tag Propagation IUI ’20, March 17–20, 2020, Cagliari, Italy

threshold experiments were ‘wheel’ and ‘propeller’, and the worst
performing tags were ‘curved’ and ‘recliner’. The ‘recliner’ had
especially low recall and accuracy values, which means that sim-
ilarity analysis was not done properly. The low match rate from
the encoding stage suggests that the features of the ‘recliner’ and
the ‘curved’ themselves were not strong enough to represent im-
portant characteristics of the models, and the ground truth data
became inconsistent. Also, the precision-recall charts of these two
tags were unstable, and showed the abnormal patterns, different
from the charts of the rest of the tags. Therefore, we excluded them
from the rest of the experiment after the first precision-recall test.

5.2 Per-Part Propagation Performance
We used the feature of each segmented part of the model as a lo-
cal feature. To make sure that local features actually contribute
to performance improvements in propagation, we examined the
precision-recall of tag propagation using local features. We com-
pared the result of each of the local features, along with the global
ones. As in Figure 5, ‘bar’, denoting the chairs with c-shaped legs,
and ‘4legs’ had the best performance when using the legs of the
chair. ‘V-head’ showed the best F1 score when using the head of
the guitar, and the performance of ‘dart’ (denoting the knifes with
symmetrical blades) was the best when using the part ‘blade’. The
best performing local features of these tags matched the part most
closely related to the tag. (e.g., ‘4legs’-‘legs’, ‘v-head’-‘head’) As a
result, we can infer that if the tag-related local part is used in tag
propagation, the performance of the propagation could increase.

However, ‘wheel’ performed well with the global feature, even if
the local features of the part ‘legs’ had the highest F1 score among
the other local features. At the time of encoding, all chairs with
wheels were chosen as correct answers. After encoding, however,
we found that many of the chairs with wheels also had armrests
and this resulted in false propagation of the tag ‘wheel’ to chairs
with armrests. ‘Propeller’ and ‘high_tail’ (high-positioned plane’s
tail wings) also had lower F1 scores when using local features than
using global features. Airplane models contain propellers both in
the body and the wings of the model. That is to say, the feature
of the tag ‘propeller’ has been split into both local parts. In these
cases, we could improve the performance of per-part propagation
by selecting multiple local parts that are equally dominant in a
model. (e.g., selecting both ‘legs’ and ‘arms’ as significant local
parts)

Unlike the legs of the chair with the tag ‘bar’ or ‘4legs’, wheels
take up only a part of the legs. Propellers are on both the body and
the wing of an airplane, but they take up much larger portion on the
wing than on the body. Therefore, the local feature corresponding
to the wing have a greater impact on propagation performance than
the body. The tag ‘high_tail’ denotes the tail wing of an airplane, and
it refers to a portion of the part ‘tail’. In conclusion, the percentage
of the local parts related to the tag has a significant impact on tag
propagation, as well as what part of an object the tag belongs to.

We also considered the mixed feature (local + global feature)
mentioned in Ohbuchi et al. [31] by performing tag propagation
using max-pooling results of local and global features. Using mixed
features did not make a significant difference from using global

features. The result of the experiment using the mixed feature is
attached to the supplementary material.

We selected a dominant local part from the object and used it
in per-part propagation. We tested if the propagation using se-
lected local features improves the propagation performance, using
count-based threshold=4, and clipping the distance above 0.3
for each propagation. When we compare the result considering
local features to the case only using global features, the precision
of the ‘dart’ increased from 0.5699 to 0.5789, and the precision of
the ‘wheel’ increased from 0.4737 to 0.5, while the precision values
of the rest of the objects remained the same. As tags of the similar
objects are added to, and not deleted from the existing list of tags,
the recall values also increased with precision.

5.3 Language Model and Iterative search
We tested how the language model contributes to the precision
performance through anomaly detection by comparing F1 scores
of tag propagation with and without the language model. The tags
that are a composition of two words, such as ‘high_tail’, or that
do not exist in the dictionaries like ‘v-head’, were tested without
applying the language model, since these tags are classified as out-
of-vocabulary (OOV). In most cases, the performance was better
when the language model was applied. ‘Bar’, ‘wheel’, and ‘dart’
showed approximately 0.01 increase in F1 score, while ‘propeller’
had the same F1 score before and after using the language model.
In this experiment, the improvement in performance before and
after applying the language model was minor because the text
annotation of the tested dataset was all deeply related to the shape
of the 3D models. Therefore, few tags were deleted as anomalies
and even the deleted ones were most likely related to the model.
In the case study section, we tested the language model in a more
anomaly-prone, real-world dataset.

In order to ensure that irrelevant models do not appear in the
search results due to incorrect tag propagation, we tested the it-
erative search method by specifying a desired shape from the list
of models. The iterative search method deletes models that are
not similar to the selected filter shape (filter-out), and add similar
ones (filter-in). That is, filter-out is a method to increase precision,
and filter-in is to increase recall. We experimented whether there
is an increase in both precision and recall. After searching for a
given tag, filter-in and filter-out were performed together using
a local part of the randomly selected ground truth model. As a
result, filtering increases the precision-recall values in all test cases
(Figure 6). Since the fixed number of models are added (up to 30) or
removed (10 models) per filter operation, the fixed threshold of the
filter becomes the upper bound of the performance improvement.
However, it is meaningful in that users can improve the quality of
the search results by taking part in a search process through simple
interactions.

6 CASE STUDY
We conducted a case study to test how tag propagation responds
to the real-world Google Poly data. Poly data was collected in five
categories: chairs, airplanes, guitars, laptops, and knives through the
API supported by Google. Among the 100 models searched in each
category, we used those that are downloaded in .obj format. The

330

IUI ’20, March 17–20, 2020, Cagliari, Italy

Figure 5: F1 scores of tag propagation using global and local features. Each color denotes the individual tag. ‘bar’, ‘4legs’, ‘v-
head’, and ‘dart’ performed best when using the local features, while ‘wheel’, ‘propeller’, ‘high_tail’ had the highest F1 score
when using the global features.

Figure 6: Changes of precision-recall values after filtering
operation: for all the tags, both precision and recall in-
creased after the iterative search.

search results by keyword in Google Poly included many models
unrelated to the search term. Since the segmentation model that
we used have to know the category of an object, it was difficult
to use local features of general objects in Poly data. Therefore, we
conducted a case study on shape retrieval, iterative search, and

Figure 7: Example cases in which per-part propagation
works well. ‘Wheel’ and ‘round-leg’ tags are propagated to
the chair models whose overall shapes are different but legs
are similar. Similarly, ‘air-wheel’ tag is sent to the airplane
models because of the wheels in their bodies. The failure
cases occur when PolySquare selects a wrong part for prop-
agation or extracted features of the part do not show the ex-
pected characteristics.

language analysis with Google Poly data, and discovered cases
about per-part propagation using ShapeNet data. We normalized
the positions and the sizes of the Poly data and extracted features.
The tags on the models contained words in the titles, descriptions,
and hash tags. The collected Poly data can be explored on the
implemented search interface.

Language model found anomalies in Poly data. Since Poly’s
text data contains a lot of information that is not related to the
shape of the 3D model, we measured the changes before and af-
ter language analysis. On average, about 21.4% of all propagated

331

PolySquare: A Search Engine for 3D Models with Tag Propagation IUI ’20, March 17–20, 2020, Cagliari, Italy

Figure 8: Example cases for filtering operation. The above picture is the screen capture of before and after thefilter-in operation
for a keyword ‘chair’. The picture below is before and after the filter-out operation for a keyword ‘knife’. The filter object is
in the filter panel on the left of the page. As a result of the filter-in, chairs similar to the filter are placed on top of the page,
and as a result of the filter-out, the 3D text ‘knife’ is removed.

tags were classified as anomaly, and 7% were classified as out-of-
vocabulary (OOV) words. The rest of the tags were classified as
safe and were used for the actual search. Grammar terms, such as
prepositions and pronouns, that are not related to the properties
of an object, were also treated as OOV. Also, for the use of the
language model, this study did not deal with languages other than
English. Examples of tags in Poly data classified as OOV are: OBJ1,
Ataboy, FormFonts, Guiatr-Guiar, SPEECH2019, TheWaveVR, angel-
blade, magicavoxel, Busget, Speeach, etc. These words include the
names of the 3D model studios, typing errors, and made-up words.
Composite words without a space in-between were also excluded
during the case study since splitting them takes additional effort
and is out of scope of this work. In the future, we could develop
into Fasttext [3] so that we can better respond to OOVs and rare
words.

Poly data revealed various anomaly patterns than in ShapeNet
data. Words classified as anomaly have a lexical meaning but are
separated from the other tags of the object. They are likely to
contain local features that are specific to the originated object
and not likely to be included in other objects. In Poly data, the
model ‘Stool’ originally had tags ‘stool, seat, rest, chair’. After the
propagation, the model additionally got safe tags ‘furniture’ and
‘surface’, while the tags ‘pawn’, ‘chess’ were classified as anomaly.
However, one of the failure cases would be when the words ‘table,

dining’ are added to the safe tag list. These tags are likely to be
classified as safe, since they are related to the other tags (‘chair,
furniture’) even if they are not directly related to the object (stool).
Another failure case is when the group of tags is divided into two
categories. If the number of tags in one category is greater than
the other, the category with a small number of tags is assumed
to be anomalous. For example, the model ‘pixel sunglasses’ had
‘space’, ‘station’, and ‘weapon’ as propagated tags, which are not
related to the sunglasses. The tag ‘sunglasses’ and other related
tags were treated as anomaly, because the number of unrelated tags
was greater than the related ones. We believe that this problem
could be improved once we know a direct relationship between the
tags and the parts of the object.

Iterative search improved the quality of search results. Be-
fore propagating tags in Poly data, some of the chair models did not
match the result when searching for a ‘seat’, since only 16 objects
contained the tag ‘seat’. After propagating tags, 38 chairs and 12
other objects got the tag ‘seat’. We filtered out the unrelated ping-
pong ball, and filtered in the relevant shape of chair (chairs with
bars in the back) among the objects in the result. (Figure 8—Filter-
In). As a result, chairs with similar shapes appear at the beginning
of the search result, and ball-like shapes disappeared from the list.
We found additional cases of finding the desired object through the
use of filtering operation. In Figure 8—Filter-Out, searching for a

332

IUI ’20, March 17–20, 2020, Cagliari, Italy

keyword ‘knife’ with the propagated tags contained the unwanted
3D text labeled ‘knife’. After filtering the result using the knife
model, the frying pan and the 3D text disappeared from the list,
and only the knives appeared at the top of the search result.

Per-part propagation spread tags related to local features
better.We expected that the per-part propagation process would
be useful when there were tags that needed to be propagated be-
tween models whose overall shapes were different but shared local
features. Since our dataset had only few tags that represented local
features, we defined additional five tags: ‘6-in-line’ for guitar tuners,
‘double-head‘ for guitars, ‘round-leg’ and ’armrest’ for chairs, and
‘air-wheel’ for airplanes. For each of these tags, we picked a model
among all the models that matched with the tag, and attached the
tag to it to act as the originator. The models that looked the most
distinctive were selected so that the full-body propagation would
not propagate the tags successfully. Because our language model
did not work well with composite words such as double-head, we
deactivated it for this study. The clipping threshold was set more le-
niently than the preceding evaluation to observe more propagation.
After running the tag propagation pipeline, we found that three
tags (’wheel’, ’round-leg’, and ’air-wheel’) were correctly propa-
gated to the models whose overall shapes were largely different
from the originators. Of the 10 models that got the tag ’wheel’, 9
of them did have legs with wheels. Unfortunately, the tags ’6-in-
line’, ’double-head’, and ’armrest’ did not get propagated properly.
PolySquare skipped them during per-part propagation because the
parts failed to pass our threshold. There also were failure cases in
which PolySquare chose wrong parts for per-part propagation. The
failure example on the first row of Figure 7 got the tag ’wheel’ be-
cause the backrest was selected for per-part propagation instead of
the legs. Another type of failure case can happen when the feature
extraction model incorrectly determines that the parts are similar,
as seen on the second row of Figure 7.

7 LIMITATIONS AND FUTURE WORK
The object segmentation model in PolySquare can only be trained to
segment a certain category of object and cannot be used on general
objects. Since local features are extracted from the segmentation
results, the quality of features and consequently the performance
of tag propagation can be improved with a better deep learning
segmentation model.

Also in many cases, per-part propagation found similar objects
that were already found by full-body propagation. If tested on a
dataset in which the tags about local features were more prevalent,
the role of per-part propagation is expected to increase significantly.

When determining which local part represents prominent char-
acteristics of the object during per-part propagation, we considered
the distance to the nearest neighbors. However, there could be bet-
ter, more intelligent ways. For example, a classifier could be trained
to decide the correspondence between tags and parts, or tags could
be assigned to each part independently, not just to the whole object.

Finally, there might be properties other than shape (e.g., the
texture of the object or the positional relationship between the
parts) that could be considered for tag propagation.

In future research, PolySquare could be expanded to encompass
all the various factors mentioned above. Furthermore, as more

filtering results from users pile up, PolySquare could learn from
these information and improve the propagation result, becoming a
smarter interface. If PolySquare develops into a multi-modal system,
it will be possible to analyze and retrieve the relationship between
2D sketches, 3D shapes, text tags, and many other information.
Also, the way of users directly participating in improving search
results and actively reflecting preferences can be used in many
other intelligent interfaces.

8 CONCLUSION
We presented PolySquare, a search engine utilizing the tag propa-
gation method with local features. PolySquare aims to propagate
tags even when the models share shape properties only in part,
while trying to prevent incorrect propagation. To achieve this pur-
pose, PolySquare introduced the four steps of the pipeline: full-body
propagation, part segmentation, per-part propagation, and iterative
search (filtering method). Using the similarities of local features
along with the global ones, PolySquare also attached tags to the
models that are not entirely, but partially, similar. Since not all parts
of the object have notable characteristics, PolySquare selected a
dominant local feature of the model and used the selected features
in per-part propagation. To reduce the irrelevant search results
caused by invalid propagation, PolySquare used a language model
at the algorithm level, and allowed users to filter the results in a
search interface. By measuring the precision and recall in evalua-
tion, we presented that tag propagation works well using global and
local features. In per-part propagation, PolySquare attached tags to
similar objects that full-body propagation had never found before.
As a final step, the iterative search and the language model could
increase robustness of the search results. By testing PolySquare
with 3D objects downloaded from Google Poly, we showed that it
could also be applied to actual wild dataset.

ACKNOWLEDGMENTS
This work was supported by Samsung Electronics Co., Ltd.

REFERENCES
[1] Armen Avetisyan, Angela Dai, and Matthias Nießner. 2019. End-to-End CAD

Model Retrieval and 9DoF Alignment in 3D Scans. ArXiv abs/1906.04201 (2019).
[2] Ronald T. Azuma. 1997. A Survey of Augmented Reality. Presence: Teleoper. Virtual

Environ. 6, 4 (Aug. 1997), 355–385. https://doi.org/10.1162/pres.1997.6.4.355
[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-

riching Word Vectors with Subword Information. arXiv preprint arXiv:1607.04606
(2016).

[4] Benjamin Bustos, Daniel Keim, Dietmar Saupe, Tobias Schreck, and Dejan Vranić.
2006. An experimental effectiveness comparison of methods for 3D similarity
search. International Journal on Digital Libraries 6, 1 (01 Feb 2006), 39–54. https:
//doi.org/10.1007/s00799-005-0122-3

[5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-
iong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR]. Stanford University —
Princeton University — Toyota Technological Institute at Chicago.

[6] Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, and Thomas
Funkhouser. 2013. Attribit: Content Creation with Semantic Attributes. In Pro-
ceedings of the 26th Annual ACM Symposium on User Interface Software and
Technology (UIST ’13). ACM, New York, NY, USA, 193–202. https://doi.org/10.
1145/2501988.2502008

[7] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003. On
Visual Similarity Based 3D Model Retrieval. Comput. Graph. Forum 22 (09 2003),
223–232. https://doi.org/10.1111/1467-8659.00669

[8] Blender Online Community. 2018. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.

333

https://doi.org/10.1162/pres.1997.6.4.355
https://doi.org/10.1007/s00799-005-0122-3
https://doi.org/10.1007/s00799-005-0122-3
https://doi.org/10.1145/2501988.2502008
https://doi.org/10.1145/2501988.2502008
https://doi.org/10.1111/1467-8659.00669
http://www.blender.org
http://www.blender.org

PolySquare: A Search Engine for 3D Models with Tag Propagation IUI ’20, March 17–20, 2020, Cagliari, Italy

blender.org
[9] Ritendra Datta, Weina Ge, Jia Li, and James Z Wang. 2007. Toward bridging the

annotation-retrieval gap in image search. IEEE MultiMedia 14, 3 (2007), 24–35.
[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In KDD.

[12] Lubin Fan, Ruimin Wang, Linlin Xu, Jiansong Deng, and Ligang Liu. 2013. Mod-
eling by Drawing with Shadow Guidance. Comput. Graph. Forum 32 (2013),
157–166.

[13] Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. 2018. MeshNet:
Mesh Neural Network for 3D Shape Representation. In AAAI.

[14] Yifan Feng, Zhang Zizhao, Xibin ZâĂĘhao, Rongrong Ji, and Yue Gao. 2018.
GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition.
264–272. https://doi.org/10.1109/CVPR.2018.00035

[15] Thomas Funkhouser, PatrickMin, Michael Kazhdan, Joyce Chen, Alex Halderman,
David Dobkin, and David Jacobs. 2003. A Search Engine for 3D Models. ACM
Trans. Graph. 22, 1 (Jan. 2003), 83–105. https://doi.org/10.1145/588272.588279

[16] Corey Goldfeder and Peter Allen. 2008. Autotagging to Improve Text Search for
3D Models. In Proceedings of the 8th ACM/IEEE-CS Joint Conference on Digital
Libraries (JCDL ’08). ACM, New York, NY, USA, 355–358. https://doi.org/10.1145/
1378889.1378950

[17] C. Goldfeder, Haoyun Feng, and P. Allen. 2008. SHRECâĂŹ08 entry: Training set
expansion via autotags. In 2008 IEEE International Conference on Shape Modeling
and Applications. 233–234. https://doi.org/10.1109/SMI.2008.4547983

[18] Alexander Grabner, Peter M. Roth, and Vincent Lepetit. 2018. 3D Pose Estimation
and 3D Model Retrieval for Objects in the Wild. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2018), 3022–3031.

[19] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. 2009. TagProp: Discrimi-
native metric learning in nearest neighbor models for image auto-annotation.
In 2009 IEEE 12th International Conference on Computer Vision. 309–316. https:
//doi.org/10.1109/ICCV.2009.5459266

[20] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: a network with an edge. ACM Trans. Graph. 38
(2019), 90:1–90:12.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2015), 770–778.

[22] S. Hu, J. Cai, and Y. Lai. 2018. Semantic Labeling and Instance Segmentation
of 3D Point Clouds using Patch Context Analysis and Multiscale Processing.
IEEE Transactions on Visualization and Computer Graphics (2018), 1–1. https:
//doi.org/10.1109/TVCG.2018.2889944

[23] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014).

[24] Leif Kobbelt, P. Schrder, Michael Kazhdan, Thomas Funkhouser, and Szymon
Rusinkiewicz. 2003. Rotation Invariant Spherical Harmonic Representation of
3D Shape Descriptors. Proc 2003 Eurographics vol. 43 (07 2003).

[25] Hema Swetha Koppula, Abhishek Anand, Thorsten Joachims, and Ashutosh
Saxena. 2011. Semantic Labeling of 3D Point Clouds for Indoor Scenes. In
Proceedings of the 24th International Conference on Neural Information Processing
Systems (NIPS’11). Curran Associates Inc., USA, 244–252. http://dl.acm.org/
citation.cfm?id=2986459.2986487

[26] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agree-
ment for Categorical Data. Biometrics 33, 1 (1977), 159–174. http://www.jstor.
org/stable/2529310

[27] Bo et al. Li. [n. d.]. A Comparison of 3D Shape Retrieval Methods Based on a
Large-scale Benchmark Supporting Multimodal Queries. Comput. Vis. Image
Underst. 131, C ([n. d.]), 1–27.

[28] Lihaixiong Li, S.-S Zhang, X.-L Bai, and R. Huang. 2013. Auto-tagging algo-
rithm of 3D CAD models. Jisuanji Jicheng Zhizao Xitong/Computer Integrated
Manufacturing Systems, CIMS 19 (07 2013), 1484–1489.

[29] J. MacQueen. 1967. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Sta-
tistics and Probability, Volume 1: Statistics. University of California Press, Berkeley,
Calif., 281–297. https://projecteuclid.org/euclid.bsmsp/1200512992

[30] Patrick Min, Michael Kazhdan, and Thomas Funkhouser. 2004. A Comparison
of Text and Shape Matching for Retrieval of Online 3D Models. In Research and
Advanced Technology for Digital Libraries, Rachel Heery and Liz Lyon (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 209–220.

[31] Ryutarou Ohbuchi and Shun Kawamura. 2009. Shape-Based Autotagging of 3D
Models for Retrieval. In Proceedings of the 4th International Conference on Semantic
and Digital Media Technologies: Semantic Multimedia (SAMT ’09). Springer-Verlag,
Berlin, Heidelberg, 137–148. https://doi.org/10.1007/978-3-642-10543-2_14

[32] Laura Papaleo and Leila De Floriani. 2010. Manual Segmentation and Semantic-
based Hierarchical Tagging of 3D models. Eurographics Italian Chapter

Conference 2010, 25–32. https://doi.org/10.2312/LocalChapterEvents/ItalChap/
ItalianChapConf2010/025-032

[33] Jeffrey Pennington, Richard Socher, and Christoper Manning. 2014. Glove: Global
Vectors for Word Representation. EMNLP 14, 1532–1543. https://doi.org/10.3115/
v1/D14-1162

[34] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proc. of NAACL.

[35] Federico Ponchio, Marco Callieri, Matteo Dellepiane, and Roberto Scopigno. 2019.
Effective Annotations Over 3D Models. Computer Graphics Forum (05 2019).
https://doi.org/10.1111/cgf.13664

[36] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016.
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016),
77–85.

[37] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In NIPS.

[38] Olga Russakovsky, Jun Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2014. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision 115 (2014), 211–252.

[39] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Andreas Holzbach,
and Michael Beetz. 2009. Model-based and Learned Semantic Object Labeling
in 3D Point Cloud Maps of Kitchen Environments. In Proceedings of the 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’09).
IEEE Press, Piscataway, NJ, USA, 3601–3608. http://dl.acm.org/citation.cfm?id=
1733023.1733323

[40] Manolis Savva, Angel X. Chang, and Pat Hanrahan. 2015. Semantically-Enriched
3D Models for Common-sense Knowledge. CVPR 2015 Workshop on Functionality,
Physics, Intentionality and Causality (2015).

[41] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller.
2015. Multi-view convolutional neural networks for 3d shape recognition. In
Proc. ICCV.

[42] Julien Valentin, Vibhav Vineet, Ming-Ming Cheng, David Kim, Jamie Shotton,
Pushmeet Kohli, Matthias NieÃ§ner, Antonio Criminisi, Shahram Izadi, and
Philip Torr. 2015. SemanticPaint: Interactive 3D Labeling and Learning at your
Fingertips. ACM Transactions on Graphics (TOG) 34 (November 2015).

[43] Christopher P. Wadsworth. 1971. Semantics and pragmatics of lambda-calculus.
[44] Fang Wang, Le Kang, and Yi Li. 2015. Sketch-based 3D shape retrieval using

Convolutional Neural Networks. 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2015), 1875–1883.

[45] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. 2018. Dynamic Graph CNN for Learning on Point Clouds.
ArXiv abs/1801.07829 (2018).

[46] Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. 2013.
Sketch2Scene: Sketch-based Co-retrieval and Co-placement of 3D Models. ACM
Transactions on Graphics 32, 4 (2013), to appear.

[47] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu
Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. 2016. A Scalable Active
Framework for Region Annotation in 3D Shape Collections. ACM Trans. Graph.
35, 6, Article 210 (Nov. 2016), 12 pages. https://doi.org/10.1145/2980179.2980238

[48] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and J.
Xiao. 2015. 3D ShapeNets: A deep representation for volumetric shapes. In 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1912–1920.
https://doi.org/10.1109/CVPR.2015.7298801

334

http://www.blender.org
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/CVPR.2018.00035
https://doi.org/10.1145/588272.588279
https://doi.org/10.1145/1378889.1378950
https://doi.org/10.1145/1378889.1378950
https://doi.org/10.1109/SMI.2008.4547983
https://doi.org/10.1109/ICCV.2009.5459266
https://doi.org/10.1109/ICCV.2009.5459266
https://doi.org/10.1109/TVCG.2018.2889944
https://doi.org/10.1109/TVCG.2018.2889944
http://dl.acm.org/citation.cfm?id=2986459.2986487
http://dl.acm.org/citation.cfm?id=2986459.2986487
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1007/978-3-642-10543-2_14
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2010/025-032
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2010/025-032
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1111/cgf.13664
http://dl.acm.org/citation.cfm?id=1733023.1733323
http://dl.acm.org/citation.cfm?id=1733023.1733323
https://doi.org/10.1145/2980179.2980238
https://doi.org/10.1109/CVPR.2015.7298801

	Abstract
	1 Introduction
	2 Related Work
	2.1 3D Text Annotation
	2.2 3D Retrieval and Searching

	3 Tag Propagation
	3.1 Lazy Tag Propagation
	3.2 Feature Extraction and Segmentation
	3.3 Language Analysis

	4 Searching Interface
	4.1 Overview and Detail
	4.2 Iterative Search

	5 Evaluation
	5.1 Tag Propagation Thresholds
	5.2 Per-Part Propagation Performance
	5.3 Language Model and Iterative search

	6 Case Study
	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References

