
Exploratory Visualization of Smarphone-based Life-
logging Data using Smart Reality Testbed

Jae Ho Jeon, Jongheum Yeon, Sang-goo Lee, and Jinwook Seo
Department of Computer Science and Engineering & Institute of Computer Technology

College of Engineering, Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea

Email: deity@snu.ac.kr, jonghm@europa.snu.ac.kr, sglee@snu.ac.kr, jseo@snu.ac.kr
Telephone: +82-2-880-7044

Abstract— Smartphones are now an integral part of our
everyday life - people carry them around almost everywhere
every time and use them in diverse contexts. Therefore, a
smartphone can be used as a life- logging device that constantly
and naturally records people’s life for future reference. We
developed a smartphone-based life-logging platform with which
users can record diverse contextual information such as
smartphone activities, timestamps, locations, and accompanying
people, along with other sensor data. Using this platform, we
collected smartphone-based life-logs from a group of university
students. To enable users to visually explore one’s life-logs based
on the multidimensional data gathered from their mobile devices,
we designed and implemented a web-based interactive
visualization tool. We reported preliminary findings we made
through our visualization tool.

Keywords—life-logging; visualization; interaction; smartphone

I. INTRODUCTION

A smartphone can be a good medium to collect users’ daily
activities unobtrusively in the wild. More and more people
almost always carry their smartphones wherever they go. One
listens to music, updates the photo of today’s lunch menu on
Facebook, watch movies on the train, and do all other
innumerable things with the little gadget in one’s pocket. An
immense heap of data can be extracted from this device and a
lot of information about one’s life can be inferred from the data.
Unseen insights of a contemporary life can be discovered from
the smartphone usage patterns. However, the collected life-log
dataset is a very large multidimensional temporal dataset,
which makes it immensely challenging to review and analyze
the dataset. In this work, we developed a life-logging platform,
Smart Reality Testbed and designed an interactive visual
analytics tool to help gain insights into the rich set of life-
logging data.

Fifty university students participated in this study and used
the logging app which is a part of our Smart Reality Testbed
for one month. All participants signed written informed
consent forms, and the institutional review board at our
university approved this study. We have collected every
possible sensor data and user-generated/internal events for
further analysis (see Table 1 for the list of collected
information). Among the large set of collected smartphone log
data, we used the GPS sensor data and the app usage data as

our main variables for the design of our visual analytics tool.
We have visualized one’s daily smartphone usage by revealing
spatial and temporal patterns of his/her app usage. Our visual
analytics tool is crafted with modern HTML5 technologies and
supports interactive visualization of the large life-log data on
any up-to-date web browsers.

 The contributions of this paper are the following. First, we
propose Smart Reality Testbed, a scalable framework designed
to unobtrusively collect the massive life-log data. Second, we
also design and implement an interactive visual analytics tool
(Fig. 1) to help users review and analyze the multidimensional
temporal life-log data collected using the Smart Reality
Testbed. We report preliminary findings we made with our
visual analytics tool.

II. RELATED WORK

There have been many life-logging systems, but most of
them require participants to carry and control additional
hardware such as Sensecam [1, 2] for logging some or all of
their activities. While these approaches can be effective in
providing rich details to the life-log, it could harm the realism
by interrupting the natural flow of life and imposing extra
burden to users. In order to improve the realism by minimizing
the intrusiveness in life-logging, we focused on what is
possible with only the hardware that people already carry
around, i.e. smartphone. Since smartphones now have much
improved computational power and advanced sensors, they can
capture much richer details and contexts than was possible
before. There are some prior work (e.g. Rawassizadeh et al.
[4]) that also proposed a life-logging framework using only the
smartphone as the required hardware, but their approaches
focused mainly on recording the events fired from the device,
but not much on the visualization of collected data, which we
believe is worth much more efforts.

A huge amount of spatio-temporal data is dumped into the
database during the data collection process of life-logging.
These log data often need comprehensive preprocessing
before being analyzed in exploratory analytic tools such as
interactive visual analytics tools. Descriptive modeling
techniques such as clustering are most frequently used to
extract meaningful aggregated patterns in the huge log data.
For example, in order to help researchers better understand
the massive lump of disordered GPS logs, techniques similar

to the clustering techniques used in eye-tracking studies to
define fixations. Eye-tracking applications have similar
problems to what we had to overcome in this work [3, 5]. The
human eye moves rapidly from point to point and a ‘fixation’
occurs from time to time. Identification and visualization of
fixations are of main interest to eye-tracking researchers. As
the eye gaze moves from one point to another in eye tracking
studies, people moved from place to place and stayed at a
single place for a couple of hours. In this work, we used gaze
clustering techniques (Fig. 2) such as the I-VT fixation filter
[3].

III. DATA GATHERING FRAMEWORK

 We designed Smart Reality Testbed (Fig. 3), which is a
framework for collecting various types of the logs in smart
devices. Using this framework, we have collected sensor data
and user-generated/internal events (see Table 1 for the list of
collected information) from participants using Android phones.
We chose to support only one platform (i.e. Android) in this
work in order to simplify the data collection and focus more on
analysis and visualization.

We recruited fifty undergraduate students and graduate
students who was using Android smartphones, with a balanced
gender ratio and diverse departments. The participants are
asked to maintain their normal daily activity patterns. We
collected the data for a month, and they were rewarded about
$300. The fifty university students were asked to use an

Android app, which was partly based on Funf framework
(http://www.funf.org), an open-source libraries set that
facilitates the sensor data gathering from the mobile devices.
Since the Funf framework provided only a basic set of
functionalities, we had to exploit the Android API to extract the
necessary data that the Funf framework did not provide. For
data items (e.g. GPS sensor data) that required periodic
sampling due to continuous nature, we sampled four seconds of
sensor data every two minutes and logged the information.
More than 41 million logs were collected during a month of
data collection period.

Fig. 1. Visualization design of our exploratory visualization tool. Our tool consists of three components: information panel on the left side, timeline view at the
top, and map view at the bottom. Three components are interactilvey coordinated to enable users to control various aspects of exploratory visualization of
the large life-log data. For exmaple, when the user hovers on a white block in the timeline view, the information panel shows the usage duration and the
name of the used application. In addition, corresponding parts on the timeline and the map are interactively highlighted.

TABLE I. COLLECTED DATA ITEMS

Type Data Item

Positioning GPS, Bluetooth, Wifi, Cell (3G/LTE)

Social Phone call, SMS

Motion
Accelerometer, Gravity, Linear Acceleration, Gyroscope,
Orientation, Rotation Vector

Environment Light, Proximity, Magnetic Field, Pressure, Temperature

Device Battery, Time Offset

Interaction
Foreground Applications, Running Applications, Screen,
Browser Bookmarks, Browser Searches, Videos, Audio
Files, Images

Others Music Metadata, Current activity (manual entry via SMS)

IV. PROCESSING THE LIFELOGGING DATA

Among the data from various sensors and events, the most
significantly used data in this visualization was the geological
data from the GPS sensor and the app usage data. In order to
get displayable information from the raw dump, we have
preprocessed the accumulated data to pack the location
information and the app usage information together.

A. Extraction and aggregation of temporal information

One of the most important analysis tasks is to know when a
participant used what application for how long. But, such high-
level queries are not directly supported in the data-collection
app. The data collection app only captures the ‘screen-on’ and
‘screen-off’ event, and the two events fire when the
foreground application is switched to another app. In order to
infer app usage information from these raw event data, we
make the following assumptions and use them as the basis of
the data extraction algorithm for visualization.

1) The user starts to use the phone by pressing the screen
toggle button. This fires the ‘screen-on’ event.

2) If the user turns the screen off by pressing the toggle
button again, this fires the ‘screen-off’ event.

3) If the user uses the same app from the ‘screen-on’ event
to the ‘screen-off’ event, the app’s usage duration is
calculated as the time between the on and off events.

4) If the user switches to a different app, the current app is
regarded as finished and the usage duration of the app is
calculated as the time between the start of the app use
and the app-switch event.

Under ideal conditions, we could easily infer the app usage

information based on the assumption, but many problems
hindered the data extraction/aggregation process in the wild. In
order for the process to run flawlessly, at least the following
basic conditions should be satisfied: (1) the device should be
powered on 24/7, and (2) the data-collection app must
accurately record all events. But in fact, the logs were not clean
enough to apply the algorithm without additional procedures.
There were many unexpected fluctuations in the log entries.
For example, in cases such as turning off the phone by abruptly
removing the battery does not fire the ‘screen-off’ event, which
leads to a missing event for quitting the app. Without additional
proper preprocessing, the app is incorrectly logged as being
continuously used for a prolonged period, which could cause
an erroneous visualization. In order to prevent such errors, if an
app usage event is not followed by another events such as
periodic location logging, we assume that an exception has
occurred and set the current app’s usage duration as the
duration between the start time and the creation time of the last
periodic log.

B. Extraction and aggregation of spatial information

We periodically collected the GPS signal and a vast heap of
data was dumped into the database. The logging period of the
GPS sensor was set to 2 minutes, but only around 400 logs
were registered in a day. The GPS sensor sometimes failed to
generate stable location information. In some cases, the device
was not turned on for logging the location data for some reason.

Since the GPS sensor is not reliable in the sub-meter scale
and various obstacles could hinder precise measurements of the
sensor, the output of the sensors may jitter and jiggle around a
correct location even if the device is sitting still on a table. Due
to these reasons, naively plotting the locations without

REAL WORLD

2. Infrastructure

3. Open Platform

4. Applications

1. Sensors and Actuators

MongoDB Hadoop HDFSCollection API (Java & JNI)

Data Access API (REST)

Authentication API (OAuth)

Raw Data

Service Data

x 10 x 50

Front-end Server x 3
Back-end Server x 15, 100TB

x 50 x 5

Wi-Fi AP

x 1

Visualization

MySQL -> RDF Store
MapReduce

Fig. 2. Architecture of Smart Reality Testbed which is a scalable framework to unobtrusively collect the massive life-log data. Our data collection app and

visual analytics tool were developed based on this framework.

preprocessing will scatter meaningless data points all over the
screen and can lower the overall quality of visualization. In
addition to these visual perception issues, performance issues
may also arise since loading all the noisy location data requires
additional CPU time and memory space.

In order to ameliorate these problems, we have adopted an
aggregation technique to reduce the computational burden and
to improve the legibility of the visualization. Our aggregation
technique (Fig. 3) is similar to the fixation filter used in gaze-
tracking researches. The gaze-tracking applications typically
use two-pass filters to first cluster the spatio-temporal gaze data
by temporal order and to re-cluster the data by spatial
proximity in the second pass. We only used a one-pass filter in
order to keep the temporal data untouched, since we needed the
data for the time-ordered animations in the visualization.

Our aggregation algorithm works by accumulating all the
nearby and locally scattered points to a single aggregated point.
The algorithm takes the temporally ordered coordinates data as
input list and iterates from beginning of the list. In this
algorithm, an accumulated data record consists of three fields:
a single representative center point, a list of apps used in that
region and the total usage duration in the region. First, an
empty accumulation bin is created initially with an empty
application list, zero total usage time and the center coordinates
set as the first entry of the GPS log. If the distance between the
current coordinates and the previous coordinates is less than 20
meters, the current app is pushed to the used app list of the bin,
and the duration of the app is added to the current total usage
duration of the bin. If the distance is greater than 20 meters, the
current accumulation bin is saved and pushed to the result list
and the iteration continues with a new accumulation bin.
Around 400 coordinates entries are reduced to around 150
aggregated coordinates entries.

V. VISUALIZATION DESIGN

Our visualization design consists of three parts: information
panel, timeline view and map view. The information panel on
the left shows the current date, the information of the currently
focused app, the list of apps used on the current day with the
total use duration of the apps on the right, and a calendar

control where users can select a date to see the detailed log data
on the date. The three components are interactively coordinated
to enable users to control different aspects of their data
exploration. Brushing and linking interaction is implemented
on the elements in the app list of the information panel. When
users hover over an element on the list, the corresponding
items on the timeline view and the map view are highlighted.
When users click on another date from the calendar control, all
views are cleared and the log data on the selected date are
visualized.

The timeline view at the top shows a view of vertically
stacked white blocks each of which visually encodes an active
use event of the phone. Each block of the timeline view is
colored white when users used the phone at that time, and
remains navy blue otherwise. Each block is 2px in height, and
if users switches to a different app during a single usage period,
the bottom 1px of the block changes its color to navy blue in
order to distinguish it with a consecutive use of a single app.
Brushing and linking interaction between timeline view and
map view is also supported. The corresponding circles on the
map views change their background color to red if the mouse
cursor hovers on a white block in the timeline view.

The map view shows the user’s app usage pattern as black
semi-transparent circles with the radius representing the app
usage duration in the area. The visualization starts by first
zooming the map and moving its center to the proper position.
When the visualization starts, the circles appear with animation
according to their temporal order. Manipulations such as
panning and zooming are possible. The circles keep its radius
even if the zoom level is changed. The absolute radiuses of the
circles are arbitrarily set and do not have much significance.
Rather, the relative size of a specific circle among the group of
circles is important to depict the relative amount of phone
usage in that region.

VI. IMPLEMENTATION

The server part of the visualization program was built using
the Ruby on Rails framework. It handles the database
transactions and the preliminary preprocessing of the raw data.
Most heavy CPU-bound work was delegated to the client-side

(a) before clustering (b) after clustering

Fig. 3. Clustering GPS data. Before clustering the GPS data, it is difficult to identify each circle since many circles overlap in a small area. After clustering
the GPS data, the scattered circles are clustered and made into a few big circles.

since if the server takes care of all the sorting and clustering,
the server will consequently stall and it could harm the
usability and user experience of the client visualization tool. In
addition, Ruby, the language used for server-side development,
is not a very fast language and so it cannot handle these
computationally heavy workloads.

The packed data from the web server is then transferred to
the web client that then mixes the app usage data with its
corresponding location data and creates a visualization from it.
Google Maps and d3.js was used extensively with CoffeeScript
(http://coffeescript.org/) to implement the overall infrastructure
of the visualization.

VII. DISCUSSION, CONCLUSION AND FUTURE WORK

We presented an interactive visualization tool for
exploratory analysis of life-log data collected using a new
scalable framework (Smart Reality Testbed) for collecting
various types of logs in smartphones. Our visualization tool
enables users to easily review and track their everyday life by
interactively showing their smartphone usage patterns.
Depicting the aggregated usage pattern on the map in the
chronological order allowed users to make useful insights into
the overall contexts and details of their daily activities. By
carefully observing the usage patterns in the visualization,
users were able to review and recall their day-by-day activities
and experiences. It was surprising to see that most people used
their smartphones for more than three hours a day on average,
and we could always notice a part of day where the user used
the smartphone ceaselessly for an hour or longer. Social
networking apps such as Facebook and messaging apps such as
KakaoTalk were used extensively regardless of the time,
situation, and the location.

In this work, we focused mainly on location and time in our
visualization design, and there are many more collected data
fields that have not been utilized. More interesting insights can

be made if more data fields are taken into account in the visual
analytics tool design. Moreover, machine-learning techniques
can be applied to derive more sophisticated patterns in the
sensor data. For example, the data from the accelerometer can
be used to determine if the user is walking, running, or on some
transportation means. We think that additional processing of
the log data can result in much more interesting results, and
plan to improve the analysis techniques and the visualization
design in future studies.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2011-0030813).

REFERENCES
[1] Ru´ben Gouveia and Evangelos Karapanos. Footprint tracker:

Supporting diary studies with lifelogging. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’13, pages
2921–2930, New York, NY, USA, 2013. ACM.

[2] Steve Hodges, Lyndsay Williams, Emma Berry, Shahram Izadi, James
Srinivasan, Alex Butler, Gavin Smyth, Narinder Kapur, and Ken Wood.
Sensecam: A retro- spective memory aid. In Proceedings of the 8th In-
ternational Conference on Ubiquitous Computing, Ubi- Comp’06, pages
177–193, Berlin, Heidelberg, 2006. Springer-Verlag.

[3] Anneli Olsen and Ricardo Matos. Identifying parameter values for an
i-vt fixation filter suitable for handling data sampled with various
sampling frequencies. In Proceed- ings of the Symposium on Eye
Tracking Research and Applications, ETRA ’12, pages 317–320, New
York, NY, USA, 2012. ACM.

[4] Reza Rawassizadeh, Martin Tomitsch, Katarzyna Wac, and A. Min Tjoa.
Ubiqlog: A generic mobile phone-based life- log framework. Personal
Ubiquitous Comput., 17(4):621–637, April 2013.

[5] Dario D. Salvucci and Joseph H. Goldberg. Identifying fixations and
saccades in eye-tracking protocols. In Proceedings of the 2000
Symposium on Eye Tracking Research & Applications, ETRA ’00,
pages 71–78, New York, NY, USA, 2000. ACM.

