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Abstract— Smartphones are now an integral part of our 
everyday life - people carry them around almost everywhere 
every time and use them in diverse contexts. Therefore, a 
smartphone can be used as a life- logging device that constantly 
and naturally records people’s life for future reference. We 
developed a smartphone-based life-logging platform with which 
users can record diverse contextual information such as 
smartphone activities, timestamps, locations, and accompanying 
people, along with other sensor data. Using this platform, we 
collected smartphone-based life-logs from a group of university 
students. To enable users to visually explore one’s life-logs based 
on the multidimensional data gathered from their mobile devices, 
we designed and implemented a web-based interactive 
visualization tool. We reported preliminary findings we made 
through our visualization tool. 
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I.  INTRODUCTION 

A smartphone can be a good medium to collect users’ daily 
activities unobtrusively in the wild. More and more people 
almost always carry their smartphones wherever they go. One 
listens to music, updates the photo of today’s lunch menu on 
Facebook, watch movies on the train, and do all other 
innumerable things with the little gadget in one’s pocket. An 
immense heap of data can be extracted from this device and a 
lot of information about one’s life can be inferred from the data. 
Unseen insights of a contemporary life can be discovered from 
the smartphone usage patterns. However, the collected life-log 
dataset is a very large multidimensional temporal dataset, 
which makes it immensely challenging to review and analyze 
the dataset. In this work, we developed a life-logging platform, 
Smart Reality Testbed and designed an interactive visual 
analytics tool to help gain insights into the rich set of life-
logging data. 

Fifty university students participated in this study and used 
the logging app which is a part of  our Smart Reality Testbed 
for one month. All participants signed written informed 
consent forms, and the institutional review board at our 
university approved this study. We have collected every 
possible sensor data and user-generated/internal events for 
further analysis (see Table 1 for the list of collected 
information). Among the large set of collected smartphone log 
data, we used the GPS sensor data and the app usage data as 

our main variables for the design of our visual analytics tool. 
We have visualized one’s daily smartphone usage by revealing 
spatial and temporal patterns of his/her app usage. Our visual 
analytics tool is crafted with modern HTML5 technologies and 
supports interactive visualization of the large life-log data on 
any up-to-date web browsers. 

 The contributions of this paper are the following. First, we 
propose Smart Reality Testbed, a scalable framework designed 
to unobtrusively collect the massive life-log data. Second, we 
also design and implement an interactive visual analytics tool 
(Fig. 1) to help users review and analyze the multidimensional 
temporal life-log data collected using the Smart Reality 
Testbed. We report preliminary findings we made with our 
visual analytics tool. 

II. RELATED WORK 

There have been many life-logging systems, but most of 
them require participants to carry and control additional 
hardware such as Sensecam [1, 2] for logging some or all of 
their activities. While these approaches can be effective in 
providing rich details to the life-log, it could harm the realism 
by interrupting the natural flow of life and imposing extra 
burden to users. In order to improve the realism by minimizing 
the intrusiveness in life-logging, we focused on what is 
possible with only the hardware that people already carry 
around, i.e. smartphone. Since smartphones now have much 
improved computational power and advanced sensors, they can 
capture much richer details and contexts than was possible 
before. There are some prior work (e.g. Rawassizadeh et al. 
[4]) that also proposed a life-logging framework using only the 
smartphone as the required hardware, but their approaches 
focused mainly on recording the events fired from the device, 
but not much on the visualization of collected data, which we 
believe is worth much more efforts. 

A huge amount of spatio-temporal data is dumped into the 
database during the data collection process of life-logging. 
These log data often need comprehensive preprocessing  
before being analyzed in exploratory analytic tools such as 
interactive visual analytics tools. Descriptive modeling 
techniques such as clustering are most frequently used to 
extract meaningful aggregated patterns in the huge log data. 
For example, in order to help researchers better understand 
the massive lump of disordered GPS logs, techniques similar 



to the clustering techniques used in eye-tracking studies to 
define fixations. Eye-tracking applications have similar 
problems to what we had to overcome in this work [3, 5]. The 
human eye moves rapidly from point to point and a ‘fixation’ 
occurs from time to time. Identification and visualization of 
fixations are of main interest to eye-tracking researchers. As 
the eye gaze moves from one point to another in eye tracking 
studies, people moved from place to place and stayed at a 
single place for a couple of hours. In this work, we used gaze 
clustering techniques (Fig. 2) such as the I-VT fixation filter 
[3]. 

III. DATA GATHERING FRAMEWORK 

 We designed Smart Reality Testbed (Fig. 3), which is a 
framework for collecting various types of the logs in smart 
devices. Using this framework, we have collected sensor data 
and user-generated/internal events (see Table 1 for the list of 
collected information) from participants using Android phones. 
We chose to support only one platform (i.e. Android) in this 
work in order to simplify the data collection and focus more on 
analysis and visualization. 

We recruited fifty undergraduate students and graduate 
students who was using Android smartphones, with a balanced 
gender ratio and diverse departments. The participants are 
asked to maintain their normal daily activity patterns. We 
collected the data for a month, and they were rewarded about 
$300. The fifty university students were asked to use an 

Android app, which was partly based on Funf framework 
(http://www.funf.org), an open-source libraries set that 
facilitates the sensor data gathering from the mobile devices. 
Since the Funf framework provided only a basic set of 
functionalities, we had to exploit the Android API to extract the 
necessary data that the Funf framework did not provide. For 
data items (e.g. GPS sensor data) that required periodic 
sampling due to continuous nature, we sampled four seconds of 
sensor data every two minutes and logged the information. 
More than 41 million logs were collected during a month of 
data collection period. 

Fig. 1. Visualization design of our exploratory visualization tool. Our tool consists of three components: information panel on the left side, timeline view at the 
top, and map view at the bottom. Three components are interactilvey coordinated to enable users to control various aspects of exploratory visualization of 
the large life-log data. For exmaple, when the user hovers on a white block in the timeline view, the information panel shows the usage duration and the 
name of the used application. In addition, corresponding parts on the timeline and the map are interactively highlighted. 

TABLE I.  COLLECTED DATA ITEMS 

Type Data Item 

Positioning GPS, Bluetooth, Wifi, Cell (3G/LTE) 

Social Phone call, SMS 

Motion 
Accelerometer, Gravity, Linear Acceleration, Gyroscope,
Orientation, Rotation Vector 

Environment Light, Proximity, Magnetic Field, Pressure, Temperature

Device Battery, Time Offset 

Interaction
Foreground Applications, Running Applications, Screen,
Browser Bookmarks, Browser Searches, Videos, Audio 
Files, Images 

Others Music Metadata, Current activity (manual entry via SMS)



IV. PROCESSING THE LIFELOGGING DATA 

Among the data from various sensors and events, the most 
significantly used data in this visualization was the geological 
data from the GPS sensor and the app usage data. In order to 
get displayable information from the raw dump, we have 
preprocessed the accumulated data to pack the location 
information and the app usage information together. 

A. Extraction and aggregation of temporal information 

One of the most important analysis tasks is to know when a 
participant used what application for how long. But, such high-
level queries are not directly supported in the data-collection 
app. The data collection app only captures the ‘screen-on’ and 
‘screen-off’ event, and the two events fire when the 
foreground application is switched to another app. In order to 
infer app usage information from these raw event data, we 
make the following assumptions and use them as the basis of 
the data extraction algorithm for visualization. 

1) The user starts to use the phone by pressing the screen 
toggle button. This fires the ‘screen-on’ event. 

2) If the user turns the screen off by pressing the toggle 
button again, this fires the ‘screen-off’ event. 

3) If the user uses the same app from the ‘screen-on’ event 
to the ‘screen-off’ event, the app’s usage duration is 
calculated as the time between the on and off events. 

4) If the user switches to a different app, the current app is 
regarded as finished and the usage duration of the app is 
calculated as the time between the start of the app use 
and the app-switch event.  

Under ideal conditions, we could easily infer the app usage 

information based on the assumption, but many problems 
hindered the data extraction/aggregation process in the wild. In 
order for the process to run flawlessly, at least the following 
basic conditions should be satisfied: (1) the device should be 
powered on 24/7, and (2) the data-collection app must 
accurately record all events. But in fact, the logs were not clean 
enough to apply the algorithm without additional procedures. 
There were many unexpected fluctuations in the log entries. 
For example, in cases such as turning off the phone by abruptly 
removing the battery does not fire the ‘screen-off’ event, which 
leads to a missing event for quitting the app. Without additional 
proper preprocessing, the app is incorrectly logged as being 
continuously used for a prolonged period, which could cause 
an erroneous visualization. In order to prevent such errors, if an 
app usage event is not followed by another events such as 
periodic location logging, we assume that an exception has 
occurred and set the current app’s usage duration as the 
duration between the start time and the creation time of the last 
periodic log. 

B. Extraction and aggregation of spatial information 

We periodically collected the GPS signal and a vast heap of 
data was dumped into the database. The logging period of the 
GPS sensor was set to 2 minutes, but only around 400 logs 
were registered in a day. The GPS sensor sometimes failed to 
generate stable location information. In some cases, the device 
was not turned on for logging the location data for some reason. 

Since the GPS sensor is not reliable in the sub-meter scale 
and various obstacles could hinder precise measurements of the 
sensor, the output of the sensors may jitter and jiggle around a 
correct location even if the device is sitting still on a table. Due 
to these reasons, naively plotting the locations without 
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Fig. 2. Architecture of Smart Reality Testbed which is a scalable framework to unobtrusively collect the massive life-log data. Our data collection app and 

visual analytics tool were developed based on this framework. 



preprocessing will scatter meaningless data points all over the 
screen and can lower the overall quality of visualization. In 
addition to these visual perception issues, performance issues 
may also arise since loading all the noisy location data requires 
additional CPU time and memory space. 

In order to ameliorate these problems, we have adopted an 
aggregation technique to reduce the computational burden and 
to improve the legibility of the visualization. Our aggregation 
technique (Fig. 3) is similar to the fixation filter used in gaze-
tracking researches. The gaze-tracking applications typically 
use two-pass filters to first cluster the spatio-temporal gaze data 
by temporal order and to re-cluster the data by spatial 
proximity in the second pass. We only used a one-pass filter in 
order to keep the temporal data untouched, since we needed the 
data for the time-ordered animations in the visualization. 

Our aggregation algorithm works by accumulating all the 
nearby and locally scattered points to a single aggregated point. 
The algorithm takes the temporally ordered coordinates data as 
input list and iterates from beginning of the list. In this 
algorithm, an accumulated data record consists of three fields: 
a single representative center point, a list of apps used in that 
region and the total usage duration in the region. First, an 
empty accumulation bin is created initially with an empty 
application list, zero total usage time and the center coordinates 
set as the first entry of the GPS log. If the distance between the 
current coordinates and the previous coordinates is less than 20 
meters, the current app is pushed to the used app list of the bin, 
and the duration of the app is added to the current total usage 
duration of the bin. If the distance is greater than 20 meters, the 
current accumulation bin is saved and pushed to the result list 
and the iteration continues with a new accumulation bin. 
Around 400 coordinates entries are reduced to around 150 
aggregated coordinates entries. 

V. VISUALIZATION DESIGN 

Our visualization design consists of three parts: information 
panel, timeline view and map view. The information panel on 
the left shows the current date, the information of the currently 
focused app, the list of apps used on the current day with the 
total use duration of the apps on the right, and a calendar 

control where users can select a date to see the detailed log data 
on the date. The three components are interactively coordinated 
to enable users to control different aspects of their data 
exploration. Brushing and linking interaction is implemented 
on the elements in the app list of the information panel. When 
users hover over an element on the list, the corresponding 
items on the timeline view and the map view are highlighted. 
When users click on another date from the calendar control, all 
views are cleared and the log data on the selected date are 
visualized. 

The timeline view at the top shows a view of vertically 
stacked white blocks each of which visually encodes an active 
use event of the phone. Each block of the timeline view is 
colored white when users used the phone at that time, and 
remains navy blue otherwise. Each block is 2px in height, and 
if users switches to a different app during a single usage period, 
the bottom 1px of the block changes its color to navy blue in 
order to distinguish it with a consecutive use of a single app. 
Brushing and linking interaction between timeline view and 
map view is also supported. The corresponding circles on the 
map views change their background color to red if the mouse 
cursor hovers on a white block in the timeline view. 

The map view shows the user’s app usage pattern as black 
semi-transparent circles with the radius representing the app 
usage duration in the area. The visualization starts by first 
zooming the map and moving its center to the proper position. 
When the visualization starts, the circles appear with animation 
according to their temporal order. Manipulations such as 
panning and zooming are possible. The circles keep its radius 
even if the zoom level is changed. The absolute radiuses of the 
circles are arbitrarily set and do not have much significance. 
Rather, the relative size of a specific circle among the group of 
circles is important to depict the relative amount of phone 
usage in that region.  

VI. IMPLEMENTATION 

The server part of the visualization program was built using 
the Ruby on Rails framework. It handles the database 
transactions and the preliminary preprocessing of the raw data. 
Most heavy CPU-bound work was delegated to the client-side 

  
(a) before clustering                                                                                                (b) after clustering 

Fig. 3. Clustering GPS data. Before clustering the GPS data, it is difficult to identify each circle since many circles overlap in a small area. After clustering 
the GPS data, the scattered circles are clustered and made into a few big circles. 



since if the server takes care of all the sorting and clustering, 
the server will consequently stall and it could harm the 
usability and user experience of the client visualization tool. In 
addition, Ruby, the language used for server-side development, 
is not a very fast language and so it cannot handle these 
computationally heavy workloads. 

The packed data from the web server is then transferred to 
the web client that then mixes the app usage data with its 
corresponding location data and creates a visualization from it. 
Google Maps and d3.js was used extensively with CoffeeScript 
(http://coffeescript.org/) to implement the overall infrastructure 
of the visualization. 

VII. DISCUSSION, CONCLUSION AND FUTURE WORK 

We presented an interactive visualization tool for 
exploratory analysis of life-log data collected using a new 
scalable framework (Smart Reality Testbed) for collecting 
various types of logs in smartphones. Our visualization tool 
enables users to easily review and track their everyday life by 
interactively showing their smartphone usage patterns. 
Depicting the aggregated usage pattern on the map in the 
chronological order allowed users to make useful insights into 
the overall contexts and details of their daily activities. By 
carefully observing the usage patterns in the visualization, 
users were able to review and recall their day-by-day activities 
and experiences. It was surprising to see that most people used 
their smartphones for more than three hours a day on average, 
and we could always notice a part of day where the user used 
the smartphone ceaselessly for an hour or longer. Social 
networking apps such as Facebook and messaging apps such as 
KakaoTalk were used extensively regardless of the time, 
situation, and the location. 

In this work, we focused mainly on location and time in our 
visualization design, and there are many more collected data 
fields that have not been utilized. More interesting insights can 

be made if more data fields are taken into account in the visual 
analytics tool design. Moreover, machine-learning techniques 
can be applied to derive more sophisticated patterns in the 
sensor data. For example, the data from the accelerometer can 
be used to determine if the user is walking, running, or on some 
transportation means. We think that additional processing of 
the log data can result in much more interesting results, and 
plan to improve the analysis techniques and the visualization 
design in future studies. 
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