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Stroscope: Multi-scale Visualization of 
Irregularly Measured Time-series Data  

Myoungsu Cho, Bohyoung Kim, Hee-Joon Bae, and Jinwook Seo 

Abstract—For irregularly measured time-series data, the measurement frequency or interval is as crucial information as 
measurements are. A well-known time-series visualization such as the line graph is good at showing an overall temporal pattern 
of change; however, it is not so effective in revealing the measurement frequency/interval while likely giving illusory confidence 
in values between measurements. In contrast, the bar graph is more effective in showing the frequency/interval, but less 
effective in showing an overall pattern than the line graph. We integrate the line graph and bar graph in a unified visualization 
model, called a ripple graph, to take the benefits of both of them with enhanced graphical integrity. Based on the ripple graph, 
we implemented an interactive time-series data visualization tool, called Stroscope, which facilitates multi-scale visualizations 
by providing users with a graphical widget to interactively control the integrated visualization model. We evaluated the 
visualization model (i.e. the ripple graph) through a controlled user study and Stroscope through long-term case studies with 
neurologists exploring large blood pressure measurement data of stroke patients. Results from our evaluations demonstrate 
that the ripple graph outperforms existing time-series visualizations, and that Stroscope has the efficacy and potential as an 
effective visual analysis tool for (irregularly) measured time-series data. 

Index Terms—Irregularly measured time-series data, frequency-aware visualization, uncertainty visualization, long-term case 
study 

——————————      —————————— 

1 INTRODUCTION

Growing needs of finding important patterns and trends 
in time-series data in various domains have spurred the 
development of many interactive visual exploration tools: 
Line Graph Explorer [17], LiveRAC [20], SignalLens [16], 
and Data Vases [30] to name a few. As the size and com-
plexity of time-series data increase, visualization research-
ers now face new challenges and requirements for design 
of the interactive visual exploration tools. In this paper, we 
identify some of such challenges and requirements and ad-
dress them in a new interactive visualization tool called 
Stroscope. 

Most existing time-series data visualization techniques 
or tools assume that (1) each time-series data is measured 
regularly over time and (2) all time-series data have the 
same measurement range. However, there are often the 
cases that the time-series data do not meet the conditions, 
e.g. online auction data, regional rainfall/snowfall data, 
and credit card usage data. For these data, existing visual-
ization tools do not help us much in answering questions 
regarding frequency-related patterns or trends: For exam-
ple, (a) which item has the greatest number of bids? (b) in 
which city does it seldom rain in summer? (c) what is the 
difference in monthly credit card usage pattern in terms of 
the amount and frequency? 

These kinds of data are fairly abundant in the medical 
domain as well. The examples include, but are not limited 
to, body temperature, blood sugar level, and blood pres-
sure level in patient records, where the number/interval of 
measurements and hospitalization time can vary depend-
ing on patients’ condition. Researchers in the medical do-
main often have to arduously collect these data to formu-
late and test hypotheses. Although they may rely on con-
ventional statistical software or Excel for that matter, ex-
ploratory analyses for hypothesis formulation are not easy, 
not to mention that it is neither intuitive to use nor easy to 
understand the results. 

Not much effort has been put into developing visuali-
zation models or tools for such datasets in the infovis com-
munity. Aris et al. [5] called these data unevenly-spaced 
time-series data and suggested four representations (i.e. 
Sampled Events, Aggregated Sampled Event, Event Index, 
and Interleaved Event Index) for the interactive visual ex-
ploration of such data. All of them basically regularize the 
measurement interval, which could lead to loss of infor-
mation such as measurement frequency or interval which 
is likely crucial for many tasks. 

A well-known time-series data visualization, the line 
graph, is effective in revealing overall temporal trend of a 
time-series; however, it is not accurate in showing the 
measurement frequency or interval. Moreover, in some 
sense, it harms the graphical integrity [29] because the con-
nected lines lead to false confidence in values between 
measurements, especially for irregularly measured time-
series data. In contrast, the bar graph is effective in show-
ing frequency/interval without interpolating values be-
tween measurements, but it is less efficient in showing an 
overall pattern than the line graph. 
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In this paper, we propose a unified visualization model, 
called a ripple graph, that takes the benefits of both of the 
bar graph and line graph with enhanced graphical integ-
rity for not only the regularly measured but also irregu-
larly measured time-series data. The ripple graph also un-
veils uncertainty [26] of values between two temporal 
measurements by varying color intensity depending upon 
the confidence of the values. In doing so, it can effectively 
reveal the measurement frequency or interval while still 
showing the overall temporal pattern of change. We fur-
ther extend the ripple graph representation into a single 
unified multi-scale visualization model via an interactive 
2D widget to accommodate the advantages of other effi-
cient time-series data visualization techniques while ad-
dressing the scalability issue.  

Following a participatory design process with neurolo-
gists, we designed an interactive visual exploration tool for 
time-series data, called Stroscope, based on the ripple 
graph representation and the widget. We conducted a con-
trolled user study to show the efficacy of the ripple graph 
by comparing it to existing representations for time-series 
data visualization. We also performed long-term case stud-
ies following the Multi-Dimensional In-Depth Long-Term 
Case Studies protocol [28] to show the effectiveness of Stro-
scope in the real field with real users. 

This paper is organized as follows. After describing 
closely related work, we describe the design rationale 
along with real world data and a user scenario. We ex-
plain the ripple graph and its user interaction, and then in-
troduce the visualization tool - Stroscope. After we present 
the controlled user study results and the long term case 
study results, we close this paper with plans for future 
work and conclusions. 

2 RELATED WORK 
In this section, we review previous work on representation 
techniques and interactive visualization tools for time-se-
ries data. We deal with temporal event sequence visualiza-
tion separately. We also review previous work on evalua-
tion of time-series data visualizations. 

2.1 (Large) Time-series data visualization 
The goals of analyzing time-series are to grasp the evolu-
tion of data over time and detect trends and patterns for 
gaining insights and understanding data [1]. There are 
many interactive visualization tools to help users achieve 
the goals. The flexible multi-foci navigation techniques 
were proposed in KronoMiner [39] and SignalLens [16]. 
BinX [9] supports different aggregations on time dimen-
sion according to the abstraction level defined by a user. 
ChronoViz [11] is a visualization and analysis tool for time-
based data from multiple sources. Visual exploration tools 
for patient data were proposed in [10], [13] and [24]. These 
tools are designed for handling a few long time-series, but 
not for showing an intuitive overview of multiple time-se-
ries. 

Many representation techniques or interactive tools for 
large amounts of time-series have been developed. Based 
on the two-tone pseudo coloring by Saito et al. [25], a more 

space-efficient visualization technique called a horizon 
graph [22] was developed using dividing, mirroring, and 
layering techniques. However, our controlled user study 
showed that this technique based on filled line chart is not 
suitable for frequency-related tasks.  

Line Graph Explorer [17] and LiveRAC [20] provide in-
teractive interfaces for exploratory analysis as well as over-
view for multiple time-series using a Focus+Context tech-
nique. Thakur et al. [30] suggested a two-dimensional rep-
resentation using a symmetric glyph, called a kite diagram, 
and presented Data Vases to compactly display multiple 
time-series. In [7], several representation techniques, each 
of which is efficient in revealing a different level-of-details 
were introduced using medical data as examples. All these 
techniques and visualization tools were designed assum-
ing regularly measured time-series. Thus, it is difficult for 
them to show the measurement frequency or degree of ir-
regularity in measurement intervals. 

Aris et al. [5] suggested four representations for une-
venly spaced time-series data. The Sampled Events method 
and the Aggregated Sampled Event method generate an 
evenly spaced time-series data by sampling at a specific 
regular interval. The Event Index method distorts the time 
axis to highlight the number of events. The Interleaved 
Event Index method represents the sequence of events 
while preserving temporal order of events regardless of 
their real time interval. However, the first two methods can 
cause the data loss that can come from sampling and ag-
gregation and the last two methods can distort the time 
axis by arbitrarily changing the time intervals between two 
consecutive events. TimeRider [23] also deals with irregu-
larly sampled data and reveals temporal aspects using an-
imation in an animated scatter plot. In this tool, however, 
it is hard to see an overview because only one time frame 
can be seen at a time. Our tool supports an intuitive over-
view while maintaining the graphical integrity for irregu-
larly sampled data. 

2.2 Event sequences data visualization 
Temporal event sequences in the data such as electronic 
health records, highway incident logs or web logs, can be 
thought of as a kind of time-series, where each event does 
not have a quantitative property but a categorical one with 
a timestamp. The irregularly measured time-series data 
handled in this paper covers this event sequence data. 
There have been visualization tools to help users discover 
frequent or anomalous patterns in these temporal categor-
ical event sequence data. 

VISUAL-TimePAcTS [33] shows activities of individu-
als during a day using a space-time path. ActiviTree [34] 
visualizes a single event sequence using a circular tree-like 
representation and Continuum [3] visualizes a hierarchical 
relationship between temporal events. Lifelines2 provides 
visual temporal summaries to compare trends across mul-
tiple records [35] and an alignment operation that aligns 
sequences by a specific event [36]. Wongsuphasawat et al. 
[37] proposed a temporal categorical similarity measure, 
called a “Match & Mismatch”, to find similar records. 
LifeFlow [38] visualizes all possible patterns of event se-
quences through aggregation while maintaining temporal 
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interval between events. CloudLines [18] represents each 
event as a circle with the size and opacity varied by im-
portance of the event. These tools represent multiple event 
sequences by stacking and interpolating them vertically af-
ter aligning each sequence by a time attribute. We took 
these approaches, except for interpolation, in our tool to 
show an overview and compare trends across multiple 
time-series. 

2.3 Evaluation 
There have been evaluation studies on graphical percep-
tion of visual representations for time-series data to recom-
mend appropriate representations for different types of 
tasks. Javed et al. conducted a controlled user study to 
evaluate four different visualization techniques (simple 
line graph, braided graph, small multiples and horizon 
graph) for local/global tasks in terms of the graphical per-
ception of multiple time-series [15]. This study showed 
that shared-space techniques are more efficient for local 
comparison tasks and separate-space techniques are more 
efficient for dispersed comparison tasks. Aigner et al. 
showed that an indexing technique - transforming scale of 
data to a comparable unit - was superior among different 
representation techniques in comparing two heterogene-
ous time-series data through a comparative study [2]. A 
study by Heer et al. [14] compared the performance be-
tween line graph and horizon graph and showed that lay-
ered bands are more efficient for a small display space. 
Perin et al. [21] proposed interactive horizon graphs by 
adding zoom and pan interaction to horizon graph and 
showed improved performance though an evaluation with 
non-synthetic dataset. These evaluation studies were con-
cerned with the line graph and its variants. 

Shneiderman et al. introduced “Multi-dimensional In-
depth Long-term Case Studies (MILCs)” to evaluate infor-
mation visualization tools in case studies with real users 
dealing with real datasets in their workplaces [28]. This 
evaluation method has been used in many studies [20], [27],  
and [38]. We also performed long-term case studies follow-
ing the MILCs. 

Arias-Hernandez introduced PairAnalytics [6], which is 
an approach that a subject matter expert (SME) and a visual 
analytics expert (VAE) perform a given task together for real 
data and problems. In our case studies, we also employed 
a modified pair analytics method where an experimenter 
(i.e., SME) demonstrated our tool to participants (i.e., VAE) 
only when they asked for help as used in [19]. In this way, 
participants tried using our tool and quickly became famil-
iar. Then we could improve our tool iteratively by remov-
ing roadblocks. 

3 PROBLEM ANALYSIS 

One of the ultimate goals of medicine is to take care of the 
health and well-being of patients for their whole lifespan. 
To achieve this goal, it becomes necessary to keep track of 
individual health records throughout their entire lifespan, 
which makes it inevitable to deal with irregularly meas-
ured time-series data. Body temperature, blood sugar level, 
blood pressure level, and liver enzyme level are good ex-
amples. As an attempt to promote interactive information 
visualization techniques in the medical domain, a collabo-
rative participatory project was launched with neurolo-
gists interested in analyzing relationship between the pro-
gression of stroke and the blood pressure change over time. 
In the following subsections, we explain the clinical re-
search problems with the blood pressure data. 

3.1 Dataset 
A group of neurologists collected time-series data of blood 
pressure measurements for 1600 acute ischemic stroke pa-
tients at the Seoul National University Bundang Hospital 
in Korea. All patients in this dataset were hospitalized 
within 48 hours after the onset of stroke.  

There are two sets of data. One includes stroke-related 
clinical information with 29 clinical variables such as age, 
gender, and medical history. Four important variables are 
summarized in Table 1. The other dataset includes systolic 
blood pressure (SBP) and diastolic blood pressure (DBP) 
values along with the time of measurements. This dataset 
is different from the usual time-series data handled in most 
conventional time-series data visualization tools. First, it is 
measured irregularly over time. Second, each patient has a 
unique hospitalization period, i.e. the total measurement 
period is different for each patient, ranging from 3 days to 
60 days. Third, the first/last measurement time is different 
for each patient. 

3.2 A Scenario – Status Quo 
At the beginning of our participatory design process, we 
observed how neurologists analyzed blood pressure data 
in their clinical practice. As a result, we came up with a 
primary persona, Dr. Lee - a neurologist with 20 years of 
experience, and a representative user scenario that ex-
plained the status quo of the data analysis process in the 
field. 

Dr. Lee’s goal is to examine if there are differences in 
blood pressure value and variability between the patients 
whose symptoms worsen within 24 hours from the onset 
of stroke and others. He needs to focus on the effect of the 
END_progression to achieve his goal. He first separated 

TABLE 1
FOUR CLINICAL VARIABLES (SELECTED) 

 
There are 29 clinical variables in the 1600 acute ischemic stroke patients’ data that we used for the design and development of Stroscope. TOAST (Trial of 
Oragaranin Acute Stroke Treatment) stands for a classification according to the causes of stroke. END (Early Neurological Deterioration) stands for neuro-
logical worsening within hospitalization period from stroke onset. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2013.2297933

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

the patients into two groups: patients with END_progres-
sion value of 1 (group A) and other patients (group B). He 
consulted a statistician and decided to control two most 
important compounding variables – gender and age. They 
generated a new group B’ by choosing the ones in the 
group B that matched the ones in the group A in terms of 
gender and age. They used the statistical software R for the 
matching task, and then they compared the two groups of 
A and B’ in SPSS in terms of initial value, mean, standard 
deviation, maximum, and minimum of blood pressure. 
Although he wanted to see an overview of each group at 
once, descriptive statistics did not tell him an overall tem-
poral trend in intuitive ways. 

Carefully comparing the two groups, he formulated hy-
potheses. For example, he hypothesized that there would 
be a meaningful blood pressure change when an 
END_progression occurs. To verify this hypothesis, he 
needed to examine how the measurements fluctuate 
around a clinically meaningful value and how the mean 
value changes every three- or six-hour period during 24 
hours before and after END_progression occurs. These 
analyses were arduous and time consuming with conven-
tional statistical tools because the numerous iterative filter-
ing of patients and the quantization of time intervals were 
not efficiently supported in such tools. A bigger problem 
was that every patient’s data in group B’ was required to 
be aligned along a simulated event to be fairly compared 
with group A, where a simulated event could be defined 
as a virtual event occurring at the event time of the 
matched patient in group A. 

3.3 Design Process 
We learned that the neurologists have never seen their data 
in a visualization tool. The fact that they could “see” the 
data in a more intuitive and informative way and interac-
tively manipulate the data highly motivated them to par-
ticipate in the design process. 

We as information visualization designers collaborated 
with the real users – 3 neurologists to understand each 
other’s work. We had met them at the hospital 6 times over 
a 6-month period. We alternated between observing users 
while they performed data analyses with their conven-
tional tools and discussing what they did and why. We 
also showed them what is possible with interactive visual-
ization tools to educate them about information visualiza-
tion and to strengthen the partnership. 

3.4 Design Rationale 
As a result of our observations of and discussions with the 
real users, we came up with the following design rationale 
of Stroscope using a new visual representation.  
(1) Reveal measurement frequency/interval. Blood pres-

sure measurement frequency tells analysts a patient’s 
condition, an occurrence of event, or a change in sur-
roundings. We decided to design a new representation 

based on the bar graph which is useful to grasp the 
measurement frequency. 

(2) Show fluctuation. Neurologists observe changes in 
blood pressure around a clinically meaningful refer-
ence value possibly different for each patient, which 
can lead to finding patients with anomalous patterns. 
We decided to show the fluctuation of measurements 
around a user-defined clinically meaningful value. 

(3) Use focus+context technique. Systolic blood pressure 
values are concentrated in a narrow range around 120. 
It was required to enable users to interactively adjust 
their specific range of interest and see the detail while 
maintaining the context. 

(4) Keep familiarity. We integrated the two well-known 
time-series representations of the bar graph and line 
graph into a new visual representation to reduce the 
learning curve. 

(5) Provide unified interface. Different representations 
are necessary to support different tasks for exploratory 
data analysis. We designed a unified interface frame-
work into which we can seamlessly integrate multiple 
representations.  

(6) Support multiple time-series. For visual exploration of 
multiple time-series, we had to support an intuitive 
overview and user interactions such as zooming, sort-
ing, filtering, and grouping. 

(7) Facilitate comparison task. One of the main tasks in the 
analytical exploration of the blood pressure data is to 
compare between two groups. To reduce bias and the 
effect of compounding variables in the comparison task, 
selecting well-matched entities from each group is im-
portant. Interactive matching and alignment of patients 
across two groups are important for accurate compari-
son. 

(8) Integrate visualization and statistical methods. To fa-
cilitate exploratory data analysis, on-demand on-the-
spot visualization of statistical summary measures is 
required. It enables users to perform a quick-and-dirty 
hypothesis testing on the spot. 

4 RIPPLE GRAPH: A MULTI-SCALE VISUALIZATION 

MODEL FOR TIME-SERIES DATA 
We propose a multi-scale time-series data visualization 
model, called a ripple graph, to represent measurement 
frequency and uncertainty between measurement points 
as well as measurements of time-series data. We integrate 
the line graph and bar graph into the ripple graph (Figure 
1c) to take the benefits of both of them, i.e. the line graph 
for showing the overall temporal trend (Figure 1a) and the 
bar graph for revealing measurement frequency/interval 
(Figure 1b). Furthermore, it also takes advantages of space-
efficient representation techniques such as the horizon 
graph [22] and the heatmap-like graph [17] in a multi-scale 
model. 

 
Fig. 1. Concept of ripple graph. Ripple graph (c) takes the benefits of line graph (a) and bar graph (b) with enhanced graphical integrity: It 
effectively shows the overall temporal trend and the measurement frequency/interval while revealing the uncertainty of values between real 
measurements. 
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Visual representation 
The ripple graph aligns time points horizontally and meas-
urements vertically (Figure 2a). The horizontal axis runs 
vertically in the middle of the given space by default. For 
example, in case of the blood pressure data, the horizontal 
temporal axis is positioned vertically at the midpoint of the 
blood pressure value range, and each bar anchored to the 
horizontal axis is displayed upward for the values over the 
midpoint value and downward for the values under the 
midpoint value.  In this way, it is easy to see how the blood 
pressure measurements fluctuate around a specific value 
which can be any user-defined meaningful value. The de-
fault position of the horizontal axis can be changed de-
pending on the problem domain. For example, in case of 
stock data, the horizontal axis is better to be positioned at 
the bottom, i.e. at zero.  

When one measurement is exactly equal to the user-de-
fined value that the horizontal axis represents, the graph 
cannot show that measurement point because the height of 
its corresponding bar is zero, which gives a false impres-
sion to users that it was not even measured at the time 
point. To remedy this problem, we made the horizontal 
axis a tube-like dual line with the thickness of a small num-
ber of pixels. Then, the measurement point can be clearly 
shown as a blob in the tube as the eighth bar in Figure 2a 
(indicated by the green arrow). 

Multi-scale modeling 
Quantitative comparison in a ripple graph becomes chal-
lenging when many graphs have to be shown on the screen. 
In this case, the height of a ripple graph becomes too small 
to discriminate each value in the data. In order to resolve 
this problem, we developed three space-efficient methods 
in a multi-scale model. 

(1) Dimension zooming with range of interest (ROI) 
The first method allows a user to zoom in to a specific 
range of values that the user is interested in by adjusting 
the range of the vertical axis. It adjusts the height of a bar 
accordingly to the range of measurements of interest de-
fined by the user, where the vertical axis spans from the 
lowest value (ROIlow) to the highest value (ROIhigh) in the 
range. Then, the bars for any values out of the range have 
the same height, i.e. reach the top or the bottom of the 
given space.  In this way, the user can zoom in to a specific 
range of interest to compare values in the range in detail, 
while maintaining the context, i.e. knowing the existence 
of the values outside the range. The four downward bars 
with similar height in Figure 2a (see the bars within the 

green dotted circle) can be more clearly distinguishable af-
ter setting ROIlow and ROIhigh properly as shown in Figure 
2b (see the bars within the green solid circle). 

(2) Color mapping to further distinguish bars 
The second method allows a user to assign colors to meas-
urements, through which each bar is painted in the corre-
sponding color determined by a user-defined color table. 
This method was similarly used in [7] as “height-coded 
timelines,” but the two methods are different in that our 
method fills only the bars whereas the height-coded time-
lines fill the whole space including gaps between bars as 
well. Figure 2c shows that the first two bars with the same 
height are differentiated by color (gray for first bar and 
blue for second bar) and so are the third and fourth bars to 
the right end. The user-defined color mapping is shown in 
the vertical color strip on the right side of Figure 2c. To give 
users more flexible control over the visual encoding, the 
color mapping is independent of ROI.  

(3) Moving the horizontal axis 
The last method allows a user to change the vertical loca-
tion of the horizontal time axis. To see the bars with the 
values over a specific value in detail, a user can move the 
horizontal axis downwards. The horizontal axis can be 
even located at the bottom of the given space representing 
the value of ROIlow, and then the bars with the values less 
than ROIlow disappear. Figure 3a shows that the first three 
bars, which have values less than ROIlow, are filtered out. In 
this way, the vertically movable horizontal axis enables us-
ers to filter out some measurements. 

When both ROIlow and ROIhigh are set to the minimum in 
the whole measurements range and the horizontal time 
axis is located at the bottom (Figure 3b), all bars have the 
same height, i.e. the height of the given space for each se-
ries. The visualization then becomes a heatmap-like graph 
[17] where each measurement is represented by a vertical 
strip with a specific color assigned by users. Since users can 
reduce the given height per series down to 1 pixel, this 
method provides one of more scalable representations re-
garding the number of series shown at once. 

 
Fig. 2. Dimension zooming and color mapping in ripple graph. The ripple graph represents a time-series with a sequence of 12 values ranging 
from min to max for the given height h. (a) General ripple graph.  (b) Ripple graph after applying ROI parameters: Bars are more distinguishable 
from each other than bars in (a). (c) Ripple graph after assigning colors to measurement values: A color strip on the right is a user-defined color 
table. 

 
Fig. 3. Moving the horizontal axis. The ripple graph represents the 
time-series used in Fig.2. The horizontal axis is located at the bottom. 
(a) Bars with the values less than ROIlow are filtered out. (b) All bars 
have the same height when ROIlow and ROIhigh are set to the minimum
of the measurement value. 
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Visualizing degree of certainty between measurements 
While the ripple graph emphasizes individual measure-
ments, it can also show the overall pattern of change over 
time. Although the blood pressure changes continuously, 
it is measured discretely. A linear interpolation is conven-
tionally employed as a simple way to fill the gap between 
discrete measurements. However, we note that the degree 
of certainty of an interpolated value between measure-
ments decreases proportionally to the distance from a real 
measurement point. To the best of our knowledge, there 
has been no attempt to show the degree of certainty infor-
mation in time-series data visualizations, which we believe 
contributes to enhancing the graphical integrity. The ripple 
graph fills the area between bars with the color of the clos-
est bar while changing the alpha-channel value, where the 
color becomes more transparent as it gets farther from the 
closest real measurement point. Similar methods were 
used for visualizing hierarchical structure in a treemap [12] 
and density of a cluster in parallel coordinates [31]. 

Let ݔ be the distance between a real measurement point 
and a specific point between measurements. The degree of 
certainty (DOC) at the in-between point is determined as 
follows: 

ሻݔሺܥܱܦ ൌ 	െ
ݔ
ܿ
 1 

, where c is a confidence interval, defined by users, which 
represents the temporal range over which a real measure-
ment holds its confidence. The alpha value at the in-be-
tween point is the product of ܥܱܦሺݔሻ and a maximum al-
pha threshold (≤ 1). The maximum alpha threshold is em-
pirically set to 0.8. Figures 4a and 4b shows ripple graphs 
when the confidence interval is 3-hour and 6-hour, respec-
tively. The upper graph in the figure shows how the alpha 
value changes over time. 

The ripple graph has the following advantages with the 
degree of certainty representation: (1) it enhances the 
graphical integrity by showing predicted (or interpolated) 
values along with important context, i.e. the confidence of 
the predicted values; (2) the variability of measurement 
values along with measurement frequency is shown more 
clearly; (3) and it can effectively approximate the real con-
tinuous change over time for irregularly measured time-
series data. 

User interface for ripple graph manipulation 
We designed an interface to enable users to flexibly adjust 
the parameters for a ripple graph (Figure 5). To adjust the 
range of the vertical axis for a ripple graph, user can drag 
two draggable vertical edges of the rectangle-shaped range 

slider on the ROI-widget histogram (Figure 5c) to set the 
range from ROIlow to ROIhigh (e.g. 110 to 150 in Figure 5c). 
Users can also directly enter the desired value in an edit 
box on the top of each vertical line. A grey vertical line be-
tween two draggable vertical edges indicates the vertical 
location of the horizontal time axis. When ROIlow or ROIhigh 
is changed, the grey vertical line moves to the midpoint be-
tween ROIlow and ROIhigh.  

A preview (Figure 5d) below the ROI widget shows the 
height and color of a bar depending on its value ranging 
from minimum to maximum. A horizontal line on the pre-
view indicates the time axis. To examine the fluctuation of 
measurements around a specific meaningful value, a user 
can move the horizontal axis by dragging the line up and 
down to change the location of the axis between ROIlow and 
ROIhigh. Then, the grey vertical line within the ROI widget 
(e.g. 130 in Figure 5c) also moves accordingly. Any changes 
of ROI values and the horizontal axis position cause imme-
diate updates in the preview, the ROI widget, and the time-
line view. 

5 STROSCOPE 
Our 6 month-long participatory design with the neurolo-
gists leads us to implementing an interactive visualization 
tool for time-series data, entitled “Stroscope,” where the 
ripple graph is the main visualization component. In this 
section, we explain the user interface and interaction mod-
els of Stroscope along with related analytical features. 

5.1 Layout 
Stroscope consists of three main areas (Figure 6): Control 
panel, timeline view, and detail view. The control panel in 
the left area has four tabs: (1) the control tab for sorting, 
filtering, and aligning time-series, (2) the fine-tuning tab 
for adjusting various parameters of the ripple graph, (3) 
the grouping and layout tab for changing the view layout 
and dividing records into groups, and (4) the variable tab 

 
Fig. 4. Ripple graph with confidence Interval of (a) 3-hour and (b) 6-
hour. The ripple graph fills the area between bars while changing the 
alpha value. 

 
Fig. 5. Control panel for ripple graph manipulation. Controls for (a) 
connecting bars and flipping bars downward around the horizontal 
time axis, (b) adjusting confidence interval, (c) adjusting ROI values,
(d) showing a preview and changing a position of the time axis, (e) 
selecting a pre-defined color palette, and (f) manipulating color-
related parameters. 
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for creating a custom variable out of existing variables. 
The timeline view in the middle area visualizes multiple 

time-series using the ripple graph, where each series is ver-
tically stacked with the same height. All series are aligned 
by the first measurement time by default. The alignment 
indicator (i.e. the green marks in the upper timeline view 
and the vertical line in the lower timeline view in Figure 6) 
highlights the alignment time, where the relative time is 
zero.  

The detail view in the right area shows the information 
of the selected series in the timeline view, and this infor-
mation is immediately updated upon any selection. 

5.2 User Interaction 
Stroscope provides effective means to help users efficiently 
explore a large time-series data. They include common op-
erations that many existing time-series visualization tools 
support, e.g. ARF framework in [36] for alignment, rank-
ing, and filtering. 

Select a measurement variable  
Time-series data can have more than two contemporane-
ous variables changing over time, i.e. multivariate time-se-
ries. In blood pressure data, there are two such variables: 
SBP and DBP. Furthermore, Stroscope automatically gen-
erates a delta measurement variable that is defined as a se-
quence of differences between consecutive measurements 

(ᇞSBP and ᇞDBP) to help users easily examine variability. 
Users can select one of these measurement variables using 
a combo box (Figure 6ⓐ).  

Align 
An alignment operation enables users to effectively com-
pare temporal patterns before and after a specific event 
across multiple records. It helps users to predict prognosis 
and determine a treatment for a patient. Stroscope allows 
a user to align all records by a clinical variable (such as on-
set time and hospital arrival time) or by a specific event 
(such as END_progression). Users can select one of these 
variables for alignment in a combo box (Figure 6ⓑ). 

The alignment indicator at the top of the timeline view 
is positioned at the top left end by default and filled with 
the corresponding color to the selected alignment variable. 
Users can drag the indicator left or right within the entire 
time range to check the trend before and after the align-
ment point in detail. 

Zoom 
Our multi-scale visualization model, the ripple graph al-
lows users to dynamically change the visual representation 
depending upon the available display space. To maximize 
space utilization, Stroscope provides a vertical zooming to 
adjust the height of the ripple graph for each record 
through wheeling the mouse on the timeline view. A 

 
Fig. 6. Overview of Stroscope. Stroscope interface consists of three main areas: control panel (left), timeline view (center), and detail view
(right). Stroscope enables users to compare two groups at horizontally splitted views using matching, sorting, and aligning functions. In upper 
timeline view, records with END_sym_ht were aligned by occurrence time of the event, where a light green rectangle of each row indicates the 
corresponding event. Users can also select a region of interest by drawing a rubber-band rectangle over the timeline view to check statistical 
summary measures within the region (gray rectangle). Stroscope provides effective user controls for (a) selecting a measurement variable, (b)
selecting a variable for alignment, (c) making a filter present, and (d) specifying a temporal period of interest. 
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zooming on the horizontal axis is also provided to help us-
ers focus on a temporal period of interest (Figure 6ⓓ). 

Hierarchical grouping 
To detect differences among groups classified by categori-
cal variables (e.g. gender or age group) is one of the routine 
analytic tasks for neurologists. Stroscope facilitates this 
task by enabling hierarchical groupings. The result of a 
grouping is summarized in an enhanced treeview control 
(Figure 13) where each node has both the number of corre-
sponding records and a check box to show/hide the corre-
sponding group. The control panel in Figure 13 shows the 
result of a hierarchical grouping where all records are di-
vided into groups by “Cluster” first and then by “END” 
categorical variable. 

Side-by-side comparison 
One of the main tasks in the analytical exploration of the 
blood pressure data is to compare between groups. To fa-
cilitate such comparison task, a horizontal/vertical juxta-
position of views for the two groups is necessary. A user 
can define new groups by making filter presets (Figure 6
ⓒ) and apply a different preset to each view after splitting 
the timeline view horizontally or vertically into two. The 
zoom factor and the position of the alignment indicator are 
synchronized between two views. Figure 6 shows two hor-
izontally split views. 

5.3 Analytical Features 

Statistical summary measures on demand 
Providing statistical summary measures on users’ demand 
is important for gaining insights and performing a quick-
and-dirty hypothesis testing in an interactive visualization 
tool. In Stroscope, a user can designate a region of interest 
by using a rubber-band (rectangle) selection on the time-
line view, and check the descriptive statistical summary 
measures of the region. The summary measures include 
the number of records, number of measurements, average, 
standard deviation, minimum value, and maximum value. 
Stroscope provides the summary measures not only nu-
merically, but also graphically in a histogram and a box 
plot together within the selection rectangle (gray rectangle 
on timeline view in Figure 6). 

Using the side-by-side comparison feature, users can in-
stantly compare two groups in terms of the statistical sum-
mary measures. The linking and brushing technique im-
plemented in Stroscope enables a user to select a rectangu-
lar region in one timeline view and see the same region se-
lected in the other timeline view. This feature could en-
courage users to interactively perform their routine ana-
lytic task without cognitive overload.  

Accommodating individual differences 
In the blood pressure data, there exist individual differ-
ences among patients in terms of age, weight, medical his-
tory, and so on. A value of 150 is generally considered a 
slightly higher value, but the value can be a critical value 
for a patient with relatively lower blood pressure. How-
ever, for all patients, the value of 150 was represented by 
the same height and color in the ripple graph. To resolve 

this issue, Stroscope allows a user to define a reference var-
iable with a different basis value for each patient. For ex-
ample, let us consider that a user defines the average blood 
pressure during 3 days before discharge as a reference var-
iable with “SBPMean” name. Then Stroscope calculates the 
basis value for every patient according to the definition of 
the reference variable, and generates a new measurement 
variable that is defined as the difference between the real 
blood pressure value and the basis value for each patient. 
Consequently, a user can accommodate individual differ-
ences among patients using the reference variable. 

Matching 
Users are commonly interested in identifying factors that 
may contribute to a clinical outcome such as recurrence of 
END by comparing patients who have the condition (case) 
with patients who do not have the outcome (control) but 
are otherwise similar [8]. To help users conduct this kind 
of case-control study, Stroscope supports the matching of 
the case to the control. For example, users can match ‘pa-
tients with the END_recur event’ to ‘patients without the 
END_recur event’ according to various variables (e.g. gen-
der should be exactly matched and the age should not be 
different by more than 5). Then, Stroscope generates a new 
variable with a user-defined name, where one record in the 
case and one or more matched record(s) in the control have 
the same value for the variable.  

Data-space clustering and image-space clustering 
Users can gain insights by finding any regularities or 
anomalies through clustering. We used the I-kMeans algo-
rithm [32], an interactive k-Means clustering method tak-
ing advantage of the multi-resolution property of wavelets. 
We enhanced this algorithm by making it applicable to ir-
regularly measured time-series data because the algorithm 
assumes that each time-series data is measured regularly. 

Stroscope provides two kinds of clustering techniques: 
data-space clustering and image-space clustering. For the 
data-space clustering, records that have similar measure-
ment values are grouped together, which always results in 
the same clusters for the same dataset. However, a coarse 
color mapping could result in a visual inconsistency prob-
lem that the resulting visualization does not look well-clus-
tered. For example, a neurologist assigned any measure-
ments of 180 or greater to a red color because those are con-
sidered as critical values. However, data-space clustering 
could separate two measurements in the same red, e.g. 180 
and 240 because they were numerically very different in 
the data space. This result could confuse users due to the 
inconsistency between users’ mental model expressed in 
color mapping and clustering results based on actual data 
values.  

The neurologist suggested an image-space clustering 
during the participatory design process in order to resolve 
this visual inconsistency problem of the data-space cluster-
ing. In the image-space clustering, records with a similar 
color pattern are clustered together, where the clustering 
results could vary according to the color table defined by 
the user, but the results make more sense to the user who 
expresses his intention in his color mapping choice. 
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5.4 Implementation 
Stroscope is implemented in C# with Windows Presenta-
tion Foundation (WPF). Stroscope can display more than 
two different time-series datasets in a multi-monitor envi-
ronment. It is possible to individualize or synchronize pa-
rameters of the ripple graph among different monitors. In 
a 24” 1920 x 1080 resolution monitor, Stroscope can display 
up to about 950 (1900 in the side-by-side comparison mode) 
time-series interactively on screen at once. 

6 EVALUATION 
We conducted a controlled user study to evaluate the rip-
ple graph in terms of how well people could learn and use 
it in performing graphical perception tasks, compared to 
other visualization techniques for time-series data. To 
show the effectiveness of Stroscope in the real field, we also 
conducted case studies with two neurologists following 
the evaluation frameworks, Multi-Dimensional In-Depth 
Long-Term Case Studies (MILCs) [28] and PairAnalytics 
[6]. In this section, we summarize the controlled user study 
results and the two studies that we conducted with real us-
ers in the field. 

6.1 Controlled User Study 

Participants and materials  
We recruited 14 (5 females) volunteers from Seoul National 
University for the study. The average age of participants 
was 28.4, ranging from 23 to 35 years of age. Five of them 
majored in computer science and engineering, and the oth-
ers were from four different majors, i.e. chemical and bio-
logical engineering, pharmacy, economics, and communi-
cation studies. All participants were familiar with the line 
graph and bar graph. The experiment took about 40 
minutes and they were rewarded about $5.  

We prepared a time-series dataset of blood pressure 
measurements for 1600 stroke patients. We only used the 
measurements during the first 3 days after hospitalization 
to keep participants from distinguishing records by their 
different measurement periods. 

Visualization techniques 
We compared the following four visualization techniques 
for time-series data. The first three were among the most 
representative techniques. 
 Line graph (LG): We actually used a filled line graph 

with gray color to ease identification [15]. 
 Bar graph (BG):  Each bar with 3 pixels width was filled 

with gray color.  
 Interactive horizon graph (IHG): We implemented the 

horizon graph with zoom and pan interaction introduced 
in [21]. 

 Ripple graph (RG): For a fair comparison with other 
three techniques, participants were only allowed to 
change the ROI values and move the horizontal axis from 
a control interface for the ripple graph.  

We used a split-space technique where each time-series is 
shown in a row of the same height [15]. We fixed the height 
for each time-series at 24 pixels to facilitate comparison be-
tween our results and previous studies in [14] and [21].  

Tasks  
Based on the task model suggested by Andrienko and An-
drienko [4] and user studies on the graphical perception of 
multiple time-series [14][21], we chose the following four 
types of tasks.  
 Max: Selecting a time-series with the highest value across 

all records.  
 Same: Selecting a time-series which is exactly the same 

as a given record. 
 Frequency: Selecting the most frequently measured 

time-series.  
 Confidence: Determining the subjective confidence in 

the value at a given time point. The same number of time 
points was selected from real measurement points and 
those inbetween. The value for a point between two ad-
jacent measurement points was linearly interpolated. Be-
cause BG represents only real measurement points, it 
was excluded from the confidence task. 

Study design and procedure 
We ran the study as a within-subjects design, with each 
participant performing all the tasks using all the visualiza-
tion techniques. We ran the experiment as a 4 (Visualiza-
tion technique: LG, BG, IHG, and RG) ൈ 4 (Task type: Max, 
Same, Frequency, and Confidence) ൈ 2 (Number of time-
series: 20 and 40) ൈ 2 (trials) deign while counterbalancing 
the order of visualization techniques. Performance time 
and correctness of answers were the dependent variables 
of this study. To avoid a learning effect, we randomly se-
lected a small number (20 or 40) of time-series from the 
pool of 1600 time-series for each trial while maintaining 
comparable complexity across trials. 

Before beginning real tasks, we gave participants a tu-
torial on a visualization technique and showed them how 
to perform 4 types of tasks with an example. They also had 
enough time to try out each technique by themselves. Then, 
they performed 12 (3 ൈ 2 ൈ 2) tasks for BG or 16 (4 ൈ 2 ൈ 2) 
tasks for others. They were asked to finish tasks as fast and 
precisely as they could. We measured the task time and 
correctness. At the end of a study session, participants 
filled in a questionnaire for subjective evaluation of each 
visualization technique.  

Hypotheses 
We established three hypotheses for this study. 
1) For the Max and Same tasks, IHG and RG will outper-

form LG and BG in both the task time and correctness. 
2) For the Frequency task, BG and RG will outperform LG 

and IHG in both the task time and correctness. 
3) For the Confidence task, RG will outperform LG and 

IHG in distinguishing between real measurement val-
ues and interpolated values. 

Statistical analysis and results 
We analyzed the task time and correctness with a 4 (Visu-
alization technique) ൈ 3 (Task type excluding Confidence) 
ൈ 2 (Number of time-series) repeated-measures analysis of 
variance (RM-ANOVA). Regarding the task time, we 
found a significant main effect of Visualization technique 
(F3, 312 = 3.53, p < .05). Figure 7a and 7b show the mean task 
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time and correctness for each technique by task type, re-
spectively. To analyze differences among the visualization 
techniques, we also conducted Tukey’s HSD post-hoc test 
for each task type (Table 2). 

The results supported our first and second hypotheses 
except for the Same task with BG. Participants completed 
the Same task in a significantly less time and with signifi-
cantly more correct answers with BG than with LG. The 
reason might be that BG enabled participants to quickly fil-
ter the target time-series by preattentively perceiving the 
measurement frequency of time-series.  

Participants usually spent more time in completing 
tasks with 40 time-series than with 20 time-series as shown 
in Figure 8. However, there were exceptions where partic-
ipants showed similar performance for both cases. The 
likely reasons for the exceptions are as follows. 
1) For the Max task with RG, participants could identify 

the target time-series at once just by narrowing the 
range of interest of values down to maximum value.  

2) For the Same task, participants could identify the target 
time-series at once by preattentively perceiving a dif-
ferent color of a band with IHG and by grasping the 
distinctive bar occurrence frequency with BG and RG. 
In contrast, with LG, they had to use their elementary 
perceptual skills to find the target.  

3) For the Frequency task, participants could grasp the 
frequency at a glance with BG and RG by just perceiv-
ing the overall occurrence pattern of bars.  

For the Confidence task, we analyzed the results after 
dividing selected time points into three categories: (1) real 
measurement points with extreme values, (2) real meas-
urement points with non-extreme values, and (3) interpo-
lated points between two adjacent real measurement 
points (Figure 9). For real measurement points, the confi-
dences with LG and IHG were lower than those with RG. 
Especially, for real measurement points with non-extreme 
values, the confidences of LG and IHG were as low as those 
for interpolated points. It is likely because connected lines 
or filled areas in LG and IHG made it difficult to tell if such 
measurement points are real or not. Participants also an-
swered that they actually felt a difficulty in performing the 
Confidence task with LG and IHG (Figure 7c). In contrast, 
participants easily performed the Confidence task with 
more reasonable rating of the confidence values with RG 
(Figures 7c and 9). 

Subjective data 
We asked each participant to rate how difficult each task 
was by using a 7 point Likert scale [Rating: 1 = Very easy; 
7 = Very difficult] (Figure 7c). We analyzed the subjective 
rating results using Friedman test with Bonferroni correc-
tion. We found a significant main effect of Visualization 
technique (Χ2(3) = 53.2, p < .001). Pairwise comparisons 
among visualization techniques for each task show that 
participants had less or same difficulty in performing a 
task with RG than others across all task types (Table 2).  

Discussion 
Our controlled user study results supported the three hy-
potheses, suggesting that the ripple graph was overall the 
best performing in terms of task time, correctness, and sub-
jective satisfaction. Our results also suggested that the in-
teractive horizon graph was not an appropriate technique 
for measurement frequency-related analysis of irregularly 
measured time-series data even though it was known to be 
good for quantitative comparison of multiple time-series 
[21]. Although there was no difference in performance for 
the Frequency task between BG and RG, participants com-
mented that the bar graph caused confusion and eye fa-
tigue when multiple time-series were displayed.  

Participants commented that it was helpful to see the 

 
Fig. 7. (a) Task time, (b) Correctness, and (c) Difficulty for each visu-
alization technique by task type. 

 
Fig. 9. Average of subjective confidence results for each visualization 
technique by time point type. 

 
Fig. 8. Task time for each visualization technique by number of time-
series (i.e. 20 and 40). * indicates a significant difference in task time
between 20 and 40 time-series (p<.05). 

TABLE 2 
RESULTS OF POST-HOC TEST BY EACH TASK TYPE 

 
The < sign represents the inequality relation with a statistical difference (p 
< .05). 
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degree of certainty between real measurements. They 
could see the variability clearly in the ripple graph because 
visualizing the degree of certainty enabled them to per-
ceive a time-series with many individual bars as a gestalt 
(i.e. unified whole) instead of a series of scattered bars.  

6.2 Case Study 

Dataset and procedure 
We designed and developed Stroscope involving three 
neurologists in the design process. After completing an in-
itial prototype, we have conducted two case studies with 
neurologists for four months in the real field. We had a 
meeting with two participants (female and male doctors 
enrolled in a stroke fellowship program) together for about 
90 minutes every 2 or 3 weeks for the first two months for 
exchanging ideas and sharing findings while improving 
the prototype as well if necessary. We had a 1-hour meet-
ing with each participant every 2 weeks for the rest two 
months. We used the following procedure for each meet-
ing: (1) Participants gave us feedback on Stroscope. (2) We 
installed an improved version and explained the improve-
ments. (3) We let participants try Stroscope to confirm 
whether they understood the new features. In this stage, 
we employed a modified pair analytics method, where as-
sistance is provided only when participants asked for help. 
(4) After the meeting, we updated Stroscope following the 
feedback and maintained contact with the participants by 
answering their questions via e-mails or phone calls.  

When the two participants first tried Stroscope, they 
were impressed by its visual and interactive nature be-
cause they had never used such a visualization tool before. 
They were also excited that they could find significant pat-
terns in a specific group by comparing different groups us-
ing matching, aligning, and clustering. 

Participant1 (P1) 
P1 was interested in the relationships between the variabil-
ity in blood pressure and the occurrence of symptomatic 
hemorrhagic transformation (SHT) of acute ischemic 
stroke. SHT is one of the important factors that influence 
the outcome of stroke treatment. Previous studies have 
shown that the occurrence of SHT relates to high variabil-
ity in blood pressure. But statistical summary measures 
did not bring him an intuitive understanding and it was 
always elusive to examine each record separately in detail 
using conventional statistical tools. 

P1 decided to conduct a case-control study with Stro-
scope. He first defined two groups: cases are the patients 
who have had a SHT and controls are the patients who 
have not had a SHT. He used the matching function of 
Stroscope to match each patient in the cases to the patients 
in the controls according to the initial SBP (± 5mmHg) and 
age (± 5 years). After he split the timeline view into two (up 
and down), he assigned the cases to the upper view and 
the controls to the lower view. He immediately noticed 
that the blood pressure was measured more frequently and 
the hospitalization period was longer for the patients in the 
cases. For a detailed analysis, he aligned patients by the 
SHT onset time, while aligning patients in the controls by 
the SHT onset time of the patient matched in the cases. 

High or low values are observed more frequently near the 
SHT event in the cases than in the controls. 

To analyze the variability of SBP, he first selected ᇞSBP 
as a measurement variable and manipulated the color pal-
ette to make positive values red and negative values blue. 
It was difficult to see the difference of variability between 
cases and controls by just checking the occurrence of dark 
blue or dark red regions. So, he dragged the horizontal axis 
of the ripple graph to the bottom to see only the increasing 
periods with positive ᇞSBP values. In the same manner, he 
dragged the horizontal axis to the top to see only the de-
creasing periods with negative ᇞSBPs (Figure 10). Then he 
could clearly see the difference between cases and controls, 
e.g. a rapid change in the blood pressure was observed 
more frequently in the cases near the occurrence of SHT 
event. During 6 hours before and after the SHT onset event 
in Figure 10, blue regions representing the periods with de-
creasing  SBP by more than 20 appear more frequently in 
the cases (upper view) than in the controls (lower view). 

To minimize the influence of individual differences 
among patients, he decided to examine the deviation of 
SBP values.  He first defined a reference variable named 
“SBPMean” as the average SBP during 3 days before dis-
charge. And then, he changed the measurement variable to 
a new reference variable defined by SBP-SBPMean. He eas-
ily found that there were many extreme values, especially 
higher values in dark red in the cases, before the occur-
rence of SHT (Figure 11). In addition, dark red and dark 
blue colors were observed more frequently in the cases, in-
dicating that the variability of SBP was high. 

While observing the patients in the cases, he found one 
patient with an anomalous pattern: the patient exhibited a 
dramatic decrease of the “SBP-SBPMean” value about 
seven hours before the occurrence of SHT (see the black ar-
row in Figure 11). After zooming in to the patient further, 
he found that the “SBP-SBPMean” value decreased ap-
proximately from 25 to -50 (see the black arrow in Figure 
12). He wondered why the SBP value suddenly decreased. 
He checked the medical history of the patient in the EMR  
(electronic medical record) system. He found that the pa-
tient received a treatment called mechanical throm-
bectomy for an occlusion in the sphenoid segment of the 
middle cerebral artery (a part of blood vessel in the brain). 
He reconfirmed the sudden decline in the SBP value 
though two MRI scans before and after the treatment to re-
move the offending thrombus. 

 
Fig. 10. Stroscope showing only SBP decreasing periods. After select-
ing △SBP (a difference between consecutive SBP values) as a meas-
urement variable, P1 can observe △SBP values less than -20. The 
yellow mark indicates when an SHT onset event occurred. 
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Participant2 (P2)  
In P2’s clinical research, she often found that patients’ 
blood pressure increased or decreased rapidly when they 
got worse. But there are previous studies that have shown 
conflicting results because most of these studies were 
cross-sectional which compared only statistical summary 
measures between groups without taking into account the 
temporal aspect of blood pressure change. P2 wanted to go 
beyond the statistical summary measures by visually ex-
ploring individual blood pressure values and their 
changes over time using Stroscope.  

As soon as she loaded her dataset and sorted patients 
by TOAST (a classification stroke according to the causes 
of stroke), she started to make her discoveries in her da-
taset: (1) Overall, SBP value was decreasing during a day 
after the first measurement; (2) patients in ‘TOAST 2’ and 
‘TOAST 6’ groups were hospitalized for a shorter period of 
time; and (3) SBP values of patients in ‘TOAST 3’ and 
‘TOAST 4’ groups tended to be relatively low.  

Using the matching and alignment functions in Stro-
scope, P2 also figured out that the blood pressure of pa-
tients with lacunar infarcts in ‘TOAST 2’ was increasing or 
decreasing rapidly before and after an END_progression 
event. Then, she partitioned patients with lacunar infarcts 
into 5 clusters by performing a clustering using our en-
hanced I-kMeans algorithm (section 5.3): two clusters with 
high blood pressure, two clusters with low blood pressure, 
and a cluster with slightly high blood pressure. She aligned 
records by the onset time to check whether there exists any 
difference among the clusters in the elapsed time from on-
set to the END_progression event. She observed that the 
END_progression event occurred within about 30 hours 

from onset in the clusters with low blood pressure (Figure 
13). But, the number of patients with the event was not 
enough to conclude that her observation was meaningful. 
So she decided to explore in the same manner after collect-
ing more time-series for patients with lacunar infarcts. 

Discussion 
Two long-term case studies helped us test the efficacy and 
utility of Stroscope. Although Stroscope was the two par-
ticipants’ first visualization tool for time-series data, they 
became rapidly proficient in using it. We allowed them to 
ask us for help whenever they were faced with any prob-
lems. But, they used Stroscope skillfully without any help 
after the first one month of the case study. 

They used sorting, aligning, and matching functions for 
comparison of two groups, which was one of the main 
tasks in the analytical exploration of the blood pressure 
data. They could easily find differences in measurement 
frequency and variability as well as measurements, espe-
cially before and after a specific event. These findings con-
firmed what they already knew and also yielded the re-
sults contradicting previous studies. 

They changed the visual representation from a familiar 
graph such as the line graph or bar graph to their own rip-
ple graph depending upon their goals and the available 
display space. To see an intuitive overview of multiple rec-
ords, they often made all bars have the same height of 1 
pixel and then adjusted the color palette and confidence 
interval (Figure 13). For participant 1, to see only the in-
creasing/decreasing periods, he adjusted the position of 
horizontal axis and ROI values. He was satisfied with that 
he created his own graph to show the peak only. He could 
also observe one record in detail by adjusting ROI values 
after increasing the height of the ripple graph (Figure 12). 
He commented on our visualization model and interactive 
widget as follows: “It is very nice that I can progressively 

 
Fig. 11. Stroscope showing a “SBP-SBPMean” variable. A black ar-
row indicates a patient with an anomalous pattern. Dark blue repre-
sents a sudden decrease in SBP (a great negative value of “SBP-
SBPMean”). The yellow mark is the indicator of SHT onset event. 

 
Fig. 12. Stroscope showing the detail of the patient with anomalous
pattern in Fig. 11. P1 identified that the “SBP-SBPMean” value de-
creased approximately from 25 to -50 about 7 hours before the SHT
onset. The yellow mark is the indicator of SHT onset event. 

 
Fig. 13. Stroscope showing hierarchical grouping result. P2 aligned 
patients by onset time and grouped patients according to Cluster and 
END variables after performing a clustering function. Black 
rectangular spots in the timeline view represent the END_progression 
event. In the two clusters with low blood pressure (the first and last 
clusters), the event tends to occur within about 30 hours from onset.
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narrow down to a range of values of my interest after un-
derstanding the context.” 

Although our multi-scale visualization model enables 
users to choose the best representation for a given display 
space, the scalability issue still remains. It can only scale up 
to a point where each time-series takes a pixel height. It is 
possible to scale up further by employing aggregation or 
data reduction techniques, but then we may lead to a more 
aggregated overview, thus inducing information loss. 
Such information loss is in general unacceptable in the 
medical field since it could complicate or mislead medical 
decision-making.  

Another limitation is that we conducted two case stud-
ies in only one domain, i.e. medical domain with a blood 
pressure data. Further case studies are required to show 
that Stroscope based on the ripple graph is not a domain-
specific tool. Thus, more case studies in other domains can 
be meaningful future work. 

7 CONCLUSION AND FUTURE WORK 
In this paper, we presented a multi-scale visualization 
model, i.e. a ripple graph for irregularly measured time-
series data, concerned with measurement frequency and 
confidence in values between measurements. To investi-
gate the efficacy and potential of the ripple graph, we im-
plemented an interactive visualization tool, Stroscope in 
which we provided an interactive widget to enable intui-
tive control of the ripple graph and several analytical func-
tions. We then evaluated the ripple graph and Stroscope 
by conducting a controlled user study and two long-term 
case studies with neurologists. Results showed a promis-
ing possibility that our ripple graph is generally applicable 
visualization model for time-series. Case study partici-
pants could efficiently exploit the visualization model and 
the analytical functions of Stroscope throughout their ex-
ploratory analysis processes.  

While the ripple graph focused on quantitative values 
only at discrete time points, more work is needed to gen-
eralize Stroscope to deal with a time axis not only as time 
points but also as time intervals (e.g. a representation like 
Gantt charts). We are also planning to adopt a different 
method to accommodate individual differences among pa-
tients in the analysis of temporal change rate. For example, 
conditional variance used in stock data analysis can be 
used as an alternative variable. Furthermore, to make our 
multi-resolution clustering technique more generalizable, 
it is necessary to adopt a different wavelet transform, e.g. 
lifting scheme, which makes it possible to do a discrete 
wavelet transform without regularizing irregularly meas-
ured time-series. 
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