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Abstract—Gaze visualization has been used to understand the results from gaze tracking studies in a wide range of fields. In 
the medical field, diagnoses of medical images have been studied with gaze tracking technology to understand how radiologists 
read medical images. While prior work were mainly based on diagnosis with a single image, recent work focused on diagnosis 
with consecutive cross-sectional medical images acquired from preoperative computed tomography (CT) or magnetic 
resonance imaging (MRI). In the diagnosis, radiologists scroll through a stack of images to get a 3D cognition of organs and 
lesions. Thus, it is important to understand radiologists’ gaze patterns three dimensionally across such contiguous cross-
sectional images. However, little has been done to visualize more complicated gaze patterns from the contiguous cross-
sectional medical images. To address this problem, we present an interactive 3D gaze visualization tool, GazeVis, where InfoVis 
and SciVis techniques are harmonized to show the abstract gaze data along with a realistic 3D rendering of the visual stimuli 
(i.e. organs and lesions). We present case studies with 12 radiologists who use GazeVis to investigate gaze patterns of their 
colleagues with different levels of expertise, providing empirical evidences about the competence of our gaze visualization 
system. 

Index Terms—Eye tracking, gaze visualization, volume rendering, medical images, interaction technique 

——————————      —————————— 

1 INTRODUCTION

Gaze tracking has been used in many research fields such 
as market research, psychology research, vision research, 
and user research. Visualization plays an import role in 
analyzing the gaze data to understand human mind be-
hind gaze patterns. There have been efforts to develop 
effective visualization techniques for better understand-
ing of the gaze data [9], [27], [37], [38]. For instance, su-
perimposition of gaze data over visual stimuli has been 
shown to be effective in interpreting the data [38]. The 
superimposition technique has been adopted in most 
gaze data analysis systems. 

Gaze data visualization is relatively easy to design 
when visual stimuli are simple such as a static scene or a 
chart; however, there are many other complicated stimuli 
for which much more visualization design effort is need-
ed. For example, when the target stimuli change during a 
study session, e.g. a series of consecutive images shown 
in sequence, an effective overview of the gaze data be-
comes challenging to create. A conventional visualization 
technique of just showing the changing stimuli sequen-
tially in a 2D image with gaze data superimposed is not 
effective in revealing important overall gaze patterns. 
Especially, when the visual stimuli consist of a large 

number of images, intuitive interaction techniques such 
as dynamic queries are also necessary to support efficient 
exploration of the whole gaze data. Gaze analysis with 
radiologists who read medical images such as CT and 
MRI images is a good example for this case. Radiologists 
have to examine a series of consecutive 2D cross-sectional 
images that compose a volume of a part of human body 
to reach a diagnosis. 

Understanding how radiologists read the images is a 
key step toward preventing diagnosis errors and training 
novice radiologists better. There have been many studies in 
the radiology field that adopted the gaze tracking technol-
ogy to gain a deeper understanding of how radiologists 
perform a diagnosis [14], [15], [21], [22], [23], [24], [28]. An 
eye tracking study with mammography images helps re-
searchers understand when and why radiologists fail to 
notice abnormal lesions [22]. Kundel and Follette com-
pared gaze patterns of experts and novices in reading a 
static 2D chest x-ray scan [14]. These and most prior work 
are done with a single 2D medical image, but Phillips et al. 
presented a gaze data visualization system for a small 
number of consecutive 2D cross-sectional images compos-
ing a 3D volume [23]. Radiologists read the images one by 
one quickly scrolling through them. The system simply 
stacks the contiguous 2D cross-sectional images vertically 
to mimic the 3D volume while showing the abstract gaze 
data on each cross-sectional image using a traditional 2D 
gaze visualization, or gaze plot (Fig. 1). This approach suf-
fers from a severe occlusion problem wherein images 
above obscure ones below, failing to provide a bona fide 
overview of gaze data revealing the 3D nature of the cross-
sectional images as a whole. 
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Previous user studies showed that 3D interfac-
es/visualizations could suffer from occlusions, compli-
cated user controls, and disorienting navigation, which 
lead to the degradation of users’ task performance [5], 
[29], [39]. When designing a 3D gaze data visualization 
system for consecutive 2D cross-sectional images compos-
ing a 3D volume, it is relevant to take those three prob-
lems of 3D interfaces or visualizations into account as 
discussed in [2]. The disorientating navigation problem 
can be resolved to some extent when gaze points are vis-
ualized in a realistic volume rendering of stimuli. The 
realistic volume rendering can help users’ holistic percep-
tion of the human body, which is a strong contextual 
landmark for navigation. The second problem of compli-
cated user controls can also be addressed if interaction 
designs are based on familiar user interactions in the field. 
The occlusion problem can be also alleviated to some ex-
tent through intuitive manipulation of semitransparency 
of body parts in stimuli and gaze points in gaze data. 

We believe that a better approach to the 3D gaze data 
visualization should come from a close collaboration be-
tween two branches of visualization: information visuali-
zation (InfoVis) and scientific visualization (SciVis). Vol-
ume rendering techniques developed in the SciVis com-
munity should be employed to show the 3D large visual 
stimuli (i.e. organs and lesions) efficiently along with the 
gaze data. Visual encoding and user interaction design for 
the large gaze data, which are essential components of 
InfoVis, are also required to enable researchers to reveal 
important gaze patterns more effectively that are hidden 
in the 3D volumetric space. However, naïve blending of 
selected techniques from the two visualization branches 
does not work. Traditional volume rendering should be 
extended to visualize the abstract information, i.e. gaze 
points within the volume while delivering the depth per-
ception of gaze points. Dynamic queries should also be 
designed to support efficient temporal and spatial filter-
ing of gaze points within the context of the volumetric 
stimuli. 

In this paper, we present a novel interactive 3D gaze 
visualization system, GazeVis, for consecutive 2D cross-
sectional medical images. We first explore the design 
space of visualizations for interactively analyzing the 
gaze tracking data with such medical images, and find a 
need for integrating InfoVis and SciVis techniques. Using 

GazeVis, we also perform two case studies with 12 radi-
ologists following the MILCs evaluation guidelines [33], 
[36]. Based on the case study results, we summarize pros 
and cons of feasible representation techniques of GazeVis. 
It is followed by discussion and future work. 

2 RADIOLOGICAL PRACTICE 
Radiologists perform diagnoses with medical images ob-
tained from various types of imaging devices. Projection 
radiographs, i.e. x-rays, consist of a single image per ex-
amination. More advanced imaging modalities such as 
computed tomography (CT) and magnetic resonance im-
aging (MRI) generate a large number of contiguous cross-
sectional images per examination, which actually convey 
3-dimensional spatial information of human body (Fig. 1). 
Radiologists scroll through the images back and forth 
quickly to find abnormalities in a so-called stack viewing 
mode where the images are logically stacked according to 
z-axis order and radiologists examine one slice at a time. 
Scrolling the images while examining each image is anal-
ogous to interactively navigating through the human 
body.  

When radiologists scroll through the images, they of-
ten change brightness and contrast of the images to focus 
on different body parts. Thus, they often have to examine 
the same image multiple times for a full inspection. For 
instance, radiologists navigate to the bottom of the lung 
starting from neck with a certain brightness and contrast 
setting, and then they navigate back to the top of the lung 
with a different brightness and contrast setting.  

3 RELATED WORK 
This work is a result of close collaboration between Info-
Vis researchers and SciVis researchers and thus related to 
various previous work from both communities. We 
summarize relevant prior work in four most related areas: 
3D information visualization, real-time volume rendering, 
gaze visualization in general, and gaze visualization in 
the medical field. 

3.1 Visualization combining 2D and 3D 
Early works in the InfoVis field explored pros and cons of 
3D visualization of abstract dataset [11], [19], [30], [31], 
and most studies suggested that 3D visualizations have 
benefits only if the data has 3D spatial properties in na-
ture and the tasks require understanding the 3D spatial 
structure [45]. Cockburn and McKenzie compared the 
original 3D Data Mountain with a simple 2D redesign of 
it and found no significant difference in performing or-
ganization/retrieval tasks [4]. In another study, they even 
found that 3D showed lower performance than 2D in 
terms of task completion time for spatial memory tasks 
[5]. Cockburn later revisited the spatial memory issue [6] 
in re-running Tavanti et al.’s experiment [41] with some 
uncontrolled factors controlled, and found no perfor-
mance difference in spatial memory tasks, which refuted 
the original study. Tory and Möller pointed out that in-
teraction with 3D visualizations is difficult because of 

 
Fig. 1. Gaze plot superimposed on stacked 2D cross-sectional 
images. 
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unnatural mappings between 2D mouse actions and 3D 
space [44]. GazeVis differs from the conventional 3D In-
foVis systems in that the abstract gaze data have inherent 
3D spatial information, which could benefit from 3D vis-
ualization. 

There are some work which tried to combine 2D and 
3D visualization techniques in a system. Piringer et al. 
remedied shortcomings of 2D scatterplots (e.g. overplot-
ting problem) and 3D scatterplots (e.g. perception and 
interaction problem) by interactively linking the two with 
some extensions [25]. Elmqvist et al. used animated 3D 
rotations during transitions between 2D scatterplots for 
multidimensional data [10]. While a scatterplot only dis-
plays a single aspect of the whole dataset, 3D perspective 
transition between scatterplots enabled users to follow 
transitions easily between scatterplots. Tory et al. argued 
that a combination of 2D and 3D displays was better than 
exclusively 2D or 3D representation for relative position 
estimation tasks in a 3D space [45]. In GazeVis, we also 
tried to harmonize 2D and 3D views for more effective 
exploration of the gaze data providing an intuitive 3D 
overview and 2D detail views. 

Some prior work presented design guidelines for 3D 
information visualization. Shneiderman suggested a 
number of design guidelines for a better 3D interface [35]. 
We followed these guidelines in designing our interface. 
Zhai et al. reported perceptual advantage of using partial-
occlusion in a 3D space [48]. They showed that a 3D box 
cursor with semi-transparent sides improved the perfor-
mance of target localization tasks in terms of task comple-
tion time and accuracy. As GazeVis was designed to 
show the gaze data in a 3D volumetric space, we also ap-
plied the semi-transparency technique to both stimuli 
volume data and gaze data while providing more interac-
tive control over the semitransparency. 

3.2 Volume Rendering 
Direct volume rendering (DVR) is one of methods visual-
izing 3D volumetric data from CT or MRI scanners [8], 
[18], [42]. It classifies the volume data using a transfer 
function to map a scalar value to optical properties such 
as color and opacity. Among various DVR techniques, we 
adopt ray-casting DVR which is known for its high-
quality rendering [17]. 

3.3 Gaze Visualization 
Most prior research in gaze data visualization has devel-
oped visualization techniques for showing gaze data for a 
2D static stimuli image. Among such gaze visualization 
techniques, heatmap and gaze plot are most widely used 
these days [9], and many variants of them have been pro-
posed. There are heatmap-based visualizations that ig-
nore the temporal order of gazes while presenting less 
cluttered and more compact overviews. Wooding intro-
duced a heatmap-like visualization, or fixation map built 
by applying a 3D Gaussian filter at each fixation location 
[47] to reduce clutter and enable detailed quantitative 
comparisons between different gaze patterns of multiple 
users. Špakov et al. tried to enhance the heatmap visuali-
zation by making the transparency of heatmaps adjusta-

ble [40].  
Some gaze plot based visualizations put more empha-

sis on the temporal order of gazes. Lankford proposed an 
improved gaze plot, GazeTrail where segments of a scan 
path are displayed in different colors according to gaze 
time to reveal speed of gaze movements along with fixa-
tion duration and number [16]. Räihä et al. proposed the 
time plot visualization to show the temporal order of vis-
its to area-of-interests [26] while sacrificing the exact fixa-
tion locations. Goldberg et al. extended the gaze plot (or 
visual scanpath representation) using time expansions, 
small multiples, and radial plots; and classified scanning 
strategies into nine categories [12]. 

Researchers also have proposed gaze visualization 
techniques for dynamic stimuli. For example, Tsang et al. 
introduced eSeeTrack to support comparison of fixation 
patterns on dynamic stimuli [46]. Instead of superimpos-
ing gaze patterns on top of stimuli, eSeeTrack used a 
timeline and a tree visualization to show duration, fre-
quency, and orderings of fixations. While it shows 
strength in comparison tasks, it is based on an assump-
tion that fixations are automatically extracted and labeled 
in advance, which is a relatively strong assumption for 
some domains such as medical imaging. Visualization 
techniques for 3D virtual environments also have been 
introduced. For example, Stellmach et al. introduced 3D 
scan paths, 3D attentional maps, and models of interest 
timeline view for 3D virtual environments [37], [38]. 
These techniques work only when the geometry of objects 
is known a priori. They do not consider the case where 
gaze points are not on the surface of objects but inside the 
objects. 

In this work, we introduce a 3D gaze visualization sys-
tem, GazeVis for more complicated dynamic stimuli 
which comprise a 3D volumetric space where the interior 
of the 3D space is of interest to users (e.g. contiguous 
cross-sectional medial images). We propose a 3D volu-
metric data structure, i.e. gaze field as a novel representa-
tion of human attention in 3D gaze analyses, where con-
ventional 2D fixation filters do not work well. We will 
further elaborate on this issue in section 4.2. 

3.4 Gaze Analysis in Medical Field 
In the radiology field, gaze tracking techniques have been 
widely used with static 2D medical images. Most gaze 
analysis studies in this field used conventional gaze plot 
and heatmap. Kundel and Follette compared visual 
search patterns between experts and novices during di-
agnosis of a chest radiographic image [14]. Reed et al. in-
vestigated the effect of prior knowledge in reading chest 
radiographic images [28]. Mammographic images were 
also used by a number of researchers. Nodine et al. con-
ducted an eye tracking study to determine whether unre-
ported breast cancers during the diagnosis received suffi-
cient visual attention [22]. Kundel et al. found that experts 
read a mammographic image with a holistic perception 
[15]. All these work focused on analysis of a single static 
image at a time and thus their approaches are not directly 
applicable to analyzing contiguous cross-sectional images 
as a whole. 
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Most relevant to this work is Phillips et al.’s study with 

a series of cross-sectional brain MRI images [23]. They 
showed the gaze data in two different views. The first 
view accumulated all fixations throughout whole images 
on a 2D view. When one scrolls through the images like 
as in a stack viewing mode, fixations associated with the 
current image were highlighted in a different color. Since 
this view discards depth information when showing fixa-
tions, it is difficult for users to perceive the 3D nature of 
the gaze data in this view. Another view showed a 3D 
visualization of the images stack and superimposed gaze 
plots on it as shown in Fig. 1. It showed the gaze data on 
a 3D space, but this approach suffers from occlusion and 
visual clutter. Later, Phillips et al. compared the tradition-
al stack viewing mode and a virtual colonoscopy mode, 
using CT colonography images [24]. They made a virtual 
colonoscopy video with a virtually constructed 3D scene 
using the cross-sectional images. Then they asked partici-
pants to watch the video, and collected gaze data from 
them. Using the two kinds of viewing modes, they com-
pared fixation characteristics taking expertise of partici-
pants into account.  

In this work, we propose intuitive representations of 
gaze data using volume rendering techniques while alle-
viating innate problems of conventional 3D visualization 
by adopting enhanced techniques: transparency adjust-
ment, interactive coordination between 2D and 3D views, 
and rich user interactions such as spatial and temporal 
dynamic queries.  

4 GAZEVIS 
GazeVis is designed to aid medical doctors in gaining 
insights about their gaze data which is acquired during 
diagnosis with contiguous cross-sectional medical images. 
Since the size of gaze data gets much bigger with a series 
of images, we amplify cognition by adopting the visual 
information-seeking mantra [34]: overview first, zoom 
and filter, then details on demand. We implement volume 
rendering (VR or 3D) and multi-planar reconstruction 

(MPR) views to provide an overview and details of gaze 
data, respectively. We also design interactive spatial and 
temporal filtering techniques which will be explained in 
detail in this section. In 3D and MPR views, we superim-
pose the gaze data on the stimuli (i.e. organs and lesions) 
to provide users with a more intuitive spatial cue. 

GazeVis consists of four views on the left and a control 
panel on the right (Fig. 3). The four views are axial, coro-
nal, sagittal, and 3D views, clockwise from the upper left 
corner. Each of the three MPR views - axial, coronal, and 
sagittal view - represents an orthogonal plane that divides 
human body (Fig. 2). Each MPR view has cross hairs to 
control the location of the corresponding plane. For in-
stance, the vertical line in the axial view corresponds to 
the sagittal plane. User interactions on the four views and 
their interactive coordination will be explained in detail 
in section 5. 

On the right side of GazeVis, there are four sets of UI 
widgets that control parameters for gaze visualization. 
The widgets on the top are for manipulating parameters 
of Gaussian filter (explained later in section 5.5). Below 
the widgets, there is a range slider for temporal filtering 
(explained later in section 5.3). Next two sets of widgets 
are for manipulation of two transfer functions, one for 
gaze data and the other for stimuli volume data (ex-
plained later in section 5.4). 

4.1 Visualization of Stimuli Volume Data 
We adopted common visualization methods for stimuli 
volume data (i.e. contiguous cross-sectional medical im-
ages) – DVR and MPR to provide a better and more intui-
tive context for gaze data, wherein the DVR is for overall 
context and the MPR for detailed context. Both methods 
use a virtually constructed 3D volume by stacking images 
in z-order. However, each method has different character-
istics and conveys different information. 

The cross-sectional medical images are three dimen-
sionally rendered by the ray-casting DVR while the gaze 
data is superimposed on it, giving the overall context for 
gaze data. In the DVR, a transfer function maps voxel 
values (i.e. CT intensities) to colors and opacities, and the 
mapping is called classification. By adjusting the transfer 
function interactively, users define the “look” of the data: 
which parts are visualized? which parts are transparent? 
and which parts have which color. Through the classifica-
tion, users can obtain a realistic 3D scene from gray-scale 
volume data. It has been previously shown that when the 
gaze data is overlaid on the 3D scene of stimuli, the depth 
cue of the gaze data can be enhanced by exploiting partial 
occlusion with semi-transparent visualization of the 
stimuli [48]. Thus, we adopted this DVR technique to 
provide an overview of the gaze data. 

MPR, on the other hand, reconstructs a 2D image by 
cutting through the 3D volume in three different orthog-
onal planes: axial, coronal, and sagittal (Fig. 2). While 
each plane shows a single cross section at a time, radiolo-
gists most frequently use these views, especially the axial 
view, during diagnosis. Gaze data is also superimposed 
on those MPR views (Fig. 3). In GazeVis, we implemented 
MPR views as detail views for two reasons: (1) to provide 

 
Fig. 2. Multi-planar reconstruction (MPR) planes of human body. 3D
human model is from [20]. 
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detailed spatial information of the gaze data in a familiar 
way to radiologists and (2) to boost task performance in 
navigating and positioning exact gaze points in the 3D 
volumetric space. 

4.2 Computation of Gaze Field 
As discussed earlier, the gaze data, overlaid on the 3D 
scene can have the enhanced depth cue through semi-
transparent rendering of stimuli. However, a simple over-
laying such as blending a volume-rendered image of 
stimuli and a projected image of gaze data in 2D-image 
level should lead to a loss of depth cue. To avoid this, the 
gaze data has to be visualized (or rendered) simultane-
ously during rendering the stimuli, which enables the 
preservation of accurate depth order between the stimuli 
and gaze data. 

In this paper, we propose a representation method for 
the gaze data, referred to gaze field, which stores the gaze 
data in a scalar field whose value, at a position, represents 
the magnitude of fixation duration at the position. The 
gaze field is rendered three dimensionally along with 
cross-sectional medical images, delivering the accurate 
depth order and thus more enhanced depth cue. 

 
Gaze data requires proper pre-processing for visualiza-

tion. In this study, we used a 60Hz eye tracker, which 
generates 60 data points every second with gaze position, 
time stamp, pupil diameter, and additional information. 
Without proper pre-processing, the amount of raw eye 
tracking data from a modern eye tracker gets too large for 
human readers when the recording time gets longer [26]. 
Thus, most of the prior work adopted a fixation filter in 
the data pre-processing phase to identify fixations and 
saccades: Fixation is a short stop at a certain area; and 
saccade is a movement between fixations. They aggregate 
gaze points into meaningful clusters, which makes gaze 
plots less cluttered. 

Fixation filters mostly depend on spatial and temporal 
information in two dimensions [32], wherein gaze points 
are classified as a fixation by velocity or proximity 
thresholds. For a static 2D scene, such traditional filters 
can successfully identify the fixations; however, they are 
not suitable when a sequence of images is read while be-
ing scrolled up and down repeatedly. Staring at a specific 
position in a static 2D scene should be classified as a fixa-

 
Fig. 3. GazeVis interface with 4 views on the left and a control panel on the right. Bright green dots represent gaze points. 4 views are axial, 
coronal, sagittal, and 3D views, clockwise from the upper left corner. Axial, coronal, and sagittal views have corresponding cross hairs and 
rectangular borders in their corresponding colors: green, yellow, and red, respectively. A control panel has (A) widgets for Gaussian filter 
control, (B) a range slider for temporal filtering, and (C), (D) widgets for manipulating transfer functions. In this figure, a user manipulates 
thickness of the axial plane in the coronal view. The thickened axial plane is represented as a green rectangular prism in the 3D view. Gazes
inside the cube (pointed by light-green arrows) are in light green, while the gazes outside the cube are in pale green (pointed by pale-green 
arrows). 
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tion. However, when users stare at the same location in 
different image slices while scrolling them, it should not 
be classified as a fixation. It could be thought of as a z-
directional saccade. The traditional fixation filters mis-
classify those gaze data as a fixation, too. 

To address this problem, we collect slice information, 
i.e. slice number as readers scroll through the image stack, 
along with the typical gaze information such as gaze loca-
tion and time stamp. We implement a DICOM (Digital 
Imaging and Communication in Medicine) image viewer 
in GazeVis, which provides commonly-used image-
viewing functionalities of commercial PACS (Picture Ar-
chiving and Communication System) such as windowing 
(i.e. adjustment of image contrast and brightness) and 
zooming. When users read the images using this viewer, 
it collects the gaze data directly from an eye tracker in 60 
Hz by using the SDK of the eye tracker. The viewer also 
collects the slice numbers of images in the order they are 
seen. The slice numbers can be easily obtained from the 
DICOM header information. 

As mentioned above, traditional 2D fixation filters are 
not appropriate for the gaze data acquired while scrolling 
a sequence of consecutive images. Thus, we propose a 
novel gaze analysis method, which adopts the heatmap 
approach. The method applies a 2D Gaussian blur func-
tion (eq.1) to each gaze point:  

                  (1) 
By convolving the Gaussian function to the gaze data 

in a given slice, we obtain the corresponding gaze-scalar 
image for the slice, of which the pixel has a scalar value 
accumulated through the Gaussian convolution. We nor-
malized the scalar values to make the maximum 255 (i.e. 
one-byte precision). In this way, we obtain a 3D scalar 
field containing the values representing the gaze density 
(i.e. level of human attention), referred to as gaze field, 
across the entire contiguous cross-sectional medical im-
ages (Fig. 4). This gaze field has the same resolution as the 
stimuli volume data. 

We adopt the Gaussian blur because it is well-known 
to approximate the spatial receptive fields of the human 
visual system (i.e. a receptive field of ON-center and OFF-
surround) [3]. We use the Gaussian blur as an alternative 
for traditional fixation filters which are not suitable in our 
work. The Gaussian blur can attenuate the visibility of 

saccadic movements by making such saccadic movements 
have low intensity in the gaze field. Also, the human eyes 
inherently have micro-saccade movements when focusing 
on a specific region. In other words, there are involuntary 
very small eye movements even when the person is try-
ing to stare at a single point. The Gaussian blur filter 
could smooth out such drifty movements, as does the 
fixation filters for 2D gaze data. In this way, we can more 
appropriately simulate human attention at each focused 
region.  

4.3 Visualization of Gaze Field 
The 3D gaze field is also rendered using the ray-casting 
DVR, wherein its own transfer function maps the gaze 
scalar to color and opacity. The default transfer function 
we use for the gaze field is a ramp function which maps a 
higher opacity to a higher gaze scalar value. It makes the 
regions where eyes remained more frequently or for a 
longer time more apparent. We use green as the default 
color for the gaze field. Using this transfer function, users 
can adjust the look-and-feel of the gaze data interactively 
such as color change or opacity change. 

The gaze field can be rendered simultaneously along 
with the stimuli medical volume data by using multi-
volume DVR, which is a straightforward extension of the 
single-volume DVR. A ray casted from an image plane 
traverses both volume datasets simultaneously while 
sampling the intensity from the medical data and the sca-
lar value from the gaze field at an interval and accumulat-
ing colors and opacities evaluated via their own transfer 
functions. As a result, we obtain a 3D rendering of stimuli 
(i.e. organs and lesions) with the gaze data being three-
dimensionally superimposed as small cylinder-shaped 
independent objects (3D view in Fig. 3 and Fig. 6). Such 
three-dimensional superimposition does not suffer from 
any loss in depth information, and therefore it delivers 
the 3D rendering of stimuli and gaze data in the accurate 
depth order with more enhanced depth cue. Furthermore, 
by adjusting the transparency either of stimuli and gaze 
data interactively as needed, users can be relieved from 
the problem of disturbing occlusion of 3D visualization to 
a considerable extent. 

4.4 Gaze Field for Interactive Information Seeking 
In addition to its accurate depth-ordered superimposition 
with adjustable transparency, the proposed gaze field has 
advantages in terms of supporting interactive information 
seeking such as dynamic queries. As the gaze field is a 
sort of spatial data structure which stores the gaze infor-
mation at the corresponding position of the stimuli, dy-
namic spatial queries on gaze data can be directly sup-
ported (presented in detail later). In addition, any attrib-
ute of the gaze information, if stored in the spatial coor-
dinates of the gaze field, can be also visualized and ma-
nipulated during volume-rendering of the gaze field. 

In gaze analyses, temporal information often provides 
very important clues. For example, Atkins et al. proposed 
a novel plot, i.e. navigation chart to show the temporal 
viewing sequence of medical image slices, and found that 
radiologists usually examined images in two distinct 

 
Fig. 4. (a) Gaze points on stimuli volume data (i.e. contiguous medi-
cal images). (b) Gaze field with the same x-, y-, and z-resolutions as
the stimuli volume data. 
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phases: locate phase and review phase [1]. Timeline-
based gaze visualization and temporal filtering were used 
in some prior work [38], [46]. To support accurate interac-
tive temporal queries in this work, all gaze time infor-
mation should be stored in the gaze field, which is loaded 
into GPU memory during GPU-based DVR for its interac-
tive rendering. However, because some gaze points are 
gazed many times, too much GPU memory may be re-
quired to store all the gaze time stamps in the gaze field. 
Thus, we decided to prioritize the interactivity of tem-
poral query over its accuracy by storing only the last (i.e. 
most recent) time stamp for the gaze points gazed multi-
ple times to focus more on the review phase [1]. Such a 
design decision was made based on the comment by an 
expert radiologist participating the case study (presented 
later) that the last time stamp is more important than oth-
ers as the last gazing on a region is likely to confirm the 
final diagnostic decision for that region. 

In the gaze field, time stamps are stored in two-byte 
unsigned short format, giving the time granularity of 
65536 (=216) which amounts to about 18 minutes with the 
60Hz eye tracker. Although the reading time per exami-
nation greatly varies with clinical situations and diagnos-
tic tasks, it typically ranges from 3 to 15 minutes on aver-
age in outpatient examinations. Thus, two bytes are suffi-
cient to hold the time stamps. 

5 INTERACTIONS AND DYNAMIC QUERIES 
We designed various intuitive interactions for effective 
gaze data analyses in GazeVis. Three key design goals 
were: (1) we have to make them scalable in terms of the 
gaze data size; (2) we have to provide an instantaneous 
feedback to help researchers recognize causality; and (3) 
we expect them to help researchers perceive the position 
of gaze point in the 3D volumetric space. Real-time ren-
dering of the visual stimuli (i.e. organs and lesions) and 
the gaze data is a baseline requirement to meet these de-
sign goals. Using GPU-accelerated ray-casting DVR tech-
niques, we achieve the real-time rendering of the visual 
stimuli and the gaze data. In the following subsections, 
we present user interactions along with dynamic query 
interfaces. 

5.1 Interaction Design 
All four views in GazeVis (i.e. three MPR views and 3D 
view) are coordinated together so that user interactions in 
one view are reflected to the others instantaneously. 
GazeVis highlights the object under the cursor (e.g. a bor-
der of the view and a cross hair in the view) and all UI 
components representing that object in other views. For 
example, the cursor moves over the horizontal line in the 
coronal view, the corresponding cut plane, the axial view 
gets its border highlighted, and the rectangle or a rectan-
gular prism in the 3D view representing the axial plane is 
also highlighted (Fig. 3).  

Users can drag the horizontal or vertical cross hair on 
an MPR view to adjust the location of the corresponding 
plane. For example, users drag the vertical line in the axi-
al view to change the sagittal plane, i.e. to change the sag-

ittal view. One can also drag the center of cross hairs to 
move two corresponding planes at the same time. When 
one wheel-scrolls on an MPR view while the cursor not 
being on any cross hair, the view under the cursor chang-
es the location of the plane.  

Wheel-scrolling on either horizontal or vertical cross 
hair changes the thickness of the corresponding plane. 
For example, when one wheel-scrolls up on the horizontal 
line in the coronal view, the axial plane gets thicker to 
make the axial view show a composite (i.e. intensity-
averaged) image for all the image slices within the thick-
ness. The thickened axial plane is displayed in dashed 
lines on the coronal and sagittal views and in a rectangu-
lar prism in the 3D view (Fig. 3).  

One can also change the brightness or contrast of MPR 
images by right dragging. In the radiology field, it is 
known as window setting where window level denotes 
brightness and window width corresponds to contrast. 
Users can adjust the image brightness and contrast by 
right dragging vertically and horizontally, respectively. 
These are widely-used interactions in commercial medical 
imaging products. During the case study, we also addi-
tionally provided keyboard shortcuts for frequently used 
window settings. 

The 3D view on the bottom left corner supports slight-
ly different interactions. One can rotate an object in the 
view with left dragging, and one can zoom in or out with 
wheel-scroll. 

5.2 Spatial Filtering 
There are at least hundreds of contiguous cross-sectional 
images per CT/MRI scan for a patient with tens of thou-
sands of gaze points scattered on them. Researchers have 
to explore the gaze points across the images to identify 
interesting gaze patterns. To support such exploration 
tasks, we designed a spatial filtering mechanism for the 
gaze data. Instead of creating a separate dynamic query 
widget for the spatial filtering, we integrate it into the 
thickness-MPR function.  
 

When users want to focus on a subset of cross-sectional 
images, they can perform a spatial filtering by wheel-
scrolling on a cross hair to define a satisfying range of 
cross-sectional images. The wheel-scrolling adjusts the 
selection range centered at the cross hair so that only the 
gaze points within the range are selected and highlighted. 
For example, when a user wheel-scrolls on the horizontal 
cross hair in the coronal view, the spatial range (and the 
thickness) for the axial plane is adjusted and then the 
gaze points within the range are accumulated and shown 
in the (thickened) axial view (Fig. 3). In addition, the gaze 
points within the selection range are displayed in bright 
green, while the rest are shown in pale green in the 3D 
view (Fig. 3). 

5.3 Temporal Filtering 
We also designed a temporal filtering mechanism in 
GazeVis using a range slider to support researchers’ ex-
ploration of the gaze data based on time and order. When 
a specific temporal range is selected using the range slider, 
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MPR and 3D views are dynamically updated accordingly 
so that the gaze points outside the temporal range are 
hidden from all the views. 

By incorporating the temporal information in the gaze 
field (described earlier in section 4.4), it is straightforward 
to adjust the rendering algorithm to give an instantaneous 
feedback to any temporal filtering queries even on the 
large number of gaze points. During rendering the gaze 
field, only the gaze points within the temporal range are 
visualized (i.e. classified through the transfer function); 
other gaze points outside the range were simply skipped. 
By interactively dragging the temporal range slider left or 
right, users can grasp temporally changing gaze patterns 
even without an explicit gaze plot (Fig. 5). 

 

5.4 Transfer Function Control 
The transfer function adjusts the color and opacity of ana-
tomic regions and gaze data in the 3D view (Fig. 6). We 
provided a UI widget to allow users to interactively ma-
nipulate the transfer function ((C) and (D) in Fig. 3). As 
shown in (C) in Fig. 3, it consists of two panels: upper one 
for color control and lower one for opacity control. Hori-
zontal axis in the both panels corresponds to the intensity 
of the medical data (usually 12-bit data for CT and MR 
scan), ranging from 0 to 4095. In the color panel, the hori-
zontal bar shows assigned colors to the corresponding 
intensities. One can add a color thumb with a double click, 
and change the assigned color. Color thumbs can also be 
reordered by dragging. It is necessary to use multiple 
colors because a single color is often not enough to distin-
guish a high intensity point with low opacity from a low 
intensity point with high opacity. In the opacity panel, the 
vertical axis represents assigned opacities to the corre-
sponding intensities. One can assign opacity to a certain 
intensity by manipulating the control points of the opaci-

ty function. The maximum value of the vertical axis rep-
resents the opacity of 1.0, which is completely opaque, 
while the minimum value corresponds to 0.0, which is 
completely transparent. Similar transfer function is ap-
plied to the gaze field volume, with the gaze intensity 
ranging from 0 to 255. 

5.5 Gaussian Blur Control 
We also designed UI widgets to help researchers interac-
tively manipulate the parameters for the Gaussian blur 
filter. As mentioned earlier, one of the purposes of the 
Gaussian blur filter was to smooth out saccadic or micro-
saccadic eye movements. Thus by adjusting the size of the 
filter support, we can change the level of abstraction in 
representing the human gaze. One can increase the filter 
size to see more abstract overview of human attention 
map (Fig. 7) while attenuating fine movements. The 
standard deviation for the filter kernel function can con-
trol the density distribution within the filter range. In this 
manner, smaller standard deviations can emphasize the 
center of gaze, which can make more apparent each gaze 
point on the gaze paths. 

6 IMPLEMENTATION 

GazeVis is implemented with C#, C++, and WPF. We 
used Tobii analytics SDK [43] for connecting eye tracker 
and acquiring gaze data. Most of the user interface is im-
plemented with C# and WPF, and the volume rendering 
was implemented using C++ with Microsoft DirectX SDK. 

7 EVALUATION OF GAZEVIS WITH RADIOLOGISTS 

We adopted a case study-based evaluation method for 
information visualization, i.e. Multi-dimensional In-depth 
Long-term Case studies (MILCs) [33], [36] to evaluate the 

      
Fig. 5. Temporal gaze flow of a radiologist in reading a chest CT scan, revealing that he scrolled through the images from top to bottom. 

 
Fig. 6. 3D rendering of lung with three-dimensionally superimposed
gaze data. (a) With low opacity for the lung, gaze data within the lung
are clearly visualized. (b) With high opacity for the lung, the gaze data
within it are partially occluded. 

Fig. 7. Adjustments of Gaussian blur filter size. (a) 7 X 7 with stand-
ard deviation of 1. (b) 19 X 19 with standard deviation of 3.  
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efficacy and effectiveness of GazeVis as a whole system. 
A comparative evaluation study was not suitable since 
there are few gaze visualization tools comparable to this 
work and existing ones [23] have innate problems of oc-
clusion and loss of 3D spatial information when applied 
to real world cases.  

We conducted two case studies at a third-tier universi-
ty hospital with two groups of radiologists: 6 chest radi-
ologists and 6 abdominal radiologists. We followed the 
MILCs guidelines [36] and recruited the 12 domain ex-
perts for the evaluation. In early stages of the case studies, 
we developed rapport with the radiologists for about a 
year, familiarizing ourselves to medical diagnosis process 
and letting them know about visualization research. In 
later stages, we iteratively improved GazeVis according 
to the participants’ comments and collected gaze data 
when they read images to reach a diagnosis for patients. 
The collected gaze data were analyzed by two participat-
ing expert radiologists, one from each group who has 
more than ten years of experience in the field. 

7.1 Case Study Protocol 
In each case study, we visited the hospital 3 times in 3 
weeks. Besides the visits, we also communicated with the 
expert radiologists on a daily basis to help them stay in 
the flow by refreshing their memories of what had been 
done before [33]. In the first visit, we conducted a pilot 
study using a GazeVis prototype, with one radiologist. 
We first explained and demonstrated the gaze collection 
process to him. Afterwards we captured gaze data using a 
DICOM viewer of the GazeVis prototype when he read a 
prepared CT scan. Then, we showed his gaze data in the 
GazeVis prototype, and later we debriefed him to collect 
feedback on the GazeVis prototype to refine the tool. 

Among the feedback, the radiologist complained about 
the lack of predefined brightness and contrast settings (i.e. 
window settings) which are usually provided with key-
board shortcuts in commercial DICOM viewers. When 
radiologists read medical images, they have to adjust the 
brightness and contrast of images to see more clearly a 
region of interest, e.g. a specific organ. In fact, we adopted 
a commonly used windowing interface of right-click 
dragging in vertical and horizontal directions. However, 
he pointed out two problems: one thing was that it could 
cause frustration as radiologists have to spend time ad-
justing the window setting frequently; and the other was 
that it could yield unintentional gaze data during manu-
ally adjusting the window setting. This could happen as 
one may look at a point in the screen unintentionally dur-
ing the manual window adjustment even when the point 
is not clinically important. Thus we improved our design 
to support keyboard-shortcuts for frequently-used win-
dow settings before the second visit. 

In the second visit, we collected actual gaze data from 
a group of radiologists. Before the actual gaze data collec-
tion, participants had a training session where we let 
them use GazeVis for as long as needed to get used to the 
interface. The training session lasted about 5 minutes on 
average. Then we calibrated the eye tracker using a 9-
point calibration procedure before starting actual data 

collection. During gaze data collection, we showed a pre-
pared set of medical images in a stack viewing mode. Par-
ticipants were asked to perform a diagnosis as if it were a 
real reading by scrolling up and down the images and 
changing the window setting. After the data collection, 
we showed their gaze data in GazeVis to the radiologists, 
and received comments about it. Overall, it took about 10 
minutes for each participant. 

In the last visit, we asked the most experienced expert 
radiologist in each group to look into all the gaze data in 
GazeVis which had been collected in the second visit. We 
asked him to find any notable gaze patterns and compare 
the participants’ gaze patterns using GazeVis. We also 
collected comments on his experience in using GazeVis 
for gaze analysis. 

7.2 Datasets 
We prepared six CT datasets, which are from two body 
parts, chest and abdomen. For each body part, three da-
tasets were used for pilot study, training session, and in a 
main study. Details of the CT datasets are summarized in 
Table 1. 

7.3 Apparatus 
When collecting the gaze data, we used a PC with a quad-
core processor connected to a 20.8-inch Totoku medical 
monitor. A Tobii X60 eye tracker, which is known to have 
accuracy of 0.4  under ideal conditions, was used in the 
case study. The distance from participants to the eye 
tracker was approximately 65 cm on average, measured 
while they performed diagnosis as usual in this experi-
ment. 

For gaze analysis, we decided to use a separate system 
because GazeVis adopted a color visual encoding which 
was not supported by traditional medical monitors, and 
GazeVis requires high computing power for interactive 
volume/gaze data visualization. We used an Intel i7 PC 
equipped with a 3.2 GHz Quad-core processor and 12 GB 
of main memory, and a 27-inch color monitor. The system 
was also equipped with an NVIDIA GTX 480 GPU with 
1.5 GB of graphic memory. The ray-casting DVR of the 
medical/gaze data was all accelerated by GPU program-
ming using Direct3D 11 graphics API with HLSL shader 
model 4.0. 

7.4 Chest Radiologists 
Following the case study protocol laid out in section 7.1, 
we performed the first case study with 6 chest radiolo-

TABLE 1 
DICOM FILES USED IN THE CASE STUDIES 

Modality Body part Usage Resolution # of 
images 

CT Chest Pilot 512 x 512 140 
CT Chest Training 512 x 512 141 
CT Chest Main 512 x 512 154 
CT Abdomen Pilot 512 x 512 166 
CT Abdomen Training 512 x 512 149 
CT Abdomen Main 512 x 512 150 
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gists. Two of them have more than 10 years of experience 
(experts), and three of them have about 3 to 5 years of 
experience (intermediates). One of them is a first year 
resident (novice). We asked them to perform diagnosis 
without any prior knowledge about the patient. It took 
about 3 minutes on average to finish diagnosis. 

We asked the most experienced radiologist to look into 
the gaze data of the others and his own in the last visit. At 
first, he focused on the overall gaze pattern. Using the 3D 
view, he found that experts tend to have gaze points near 
the mediastinum, which is located at the center of each 
image. On the contrary, a novice made gaze points widely 
scattered on an image. He explained this tendency with 
peripheral vision, while this tendency may require fur-
ther studies to generalize. As experts can detect lesions 
even with their peripheral vision, they tend to gaze at the 
center of each image. On the other hand, novices have to 
scan over a wider range of the image thoroughly with 
their foveal vision as they have relatively low confidence 
with their peripheral vision due to the lack of experience 
in diagnosing the images using the visual information 
detected in the peripheral vision. 

Another finding was made with the range slider for 
temporal filtering. Chest radiologists usually perform 
diagnosis with two different window settings, one setting 
at a time to focus on different body parts: lung and medi-
astinum. However, the 3D view showed all gaze data as a 
whole in a given transfer function. The expert used the 
temporal filtering slider to see a group of gaze points 
clustered according to the gaze time. He himself, at first, 
read the images scrolling them down from the top to the 
bottom with the lung window setting; afterwards he 
jumped back to the top; and scrolled down to the bottom 
again with the mediastinum window setting as in Fig. 
8(a). While examining other radiologists’ temporal gaze 
patterns using the temporal filtering slider, he could learn 
that some of his colleagues showed a different gaze pat-
tern. He narrowed down the selected range, and dragged 
the slider to the right to navigate the gaze data in tem-
poral order. During the playback, he noticed that another 
expert did not jump back to the top to scroll down, but 
instead, he changed the window setting to the mediasti-
num setting and scrolled up from the bottom, examining 
in the opposite direction as in Fig. 8(b). Similar individual 
differences in the navigation strategy were also reported 
in [1]. Comparing gaze patterns of radiologists with dif-
ferent expertise level, he could also notice that while the 
gaze patterns of experts and intermediates have a vertical 
cylindrical pattern, the novice did not show such a pat-
tern but a noisily scattered gaze pattern. 

After the gaze analysis with GazeVis, the expert 
showed great interest in conducting further formal user 
studies with GazeVis. He was enthusiastic about studying 
a gaze pattern difference between experts and novices 
with a larger number of participants. He was encouraged 
by his promising experience with GazeVis so that he 
strongly discussed that the results from a follow-up study 
with more participants could lead to important clinical 
implications and could be used to educate novices. He 
was also eager to test whether prior knowledge affects the 

gaze pattern. While Reed et al. performed a similar study 
with chest x-ray images [28], he mentioned that GazeVis 
can help researchers investigate the gaze pattern with 
cross-sectional medical images. 

7.5 Abdominal Radiologists 
We conducted another case study with abdomen CT im-
ages while also following the protocol described in sec-
tion 7.1. Six abdominal radiologists participated in the 
case study. One of them has more than 10 years of experi-
ence (expert), and three of them have about 3 to 5 years of 
experience (intermediates). Two of them are first year 
residents (novices). We asked them to perform diagnosis 
without any prior knowledge about the patient. It took 
about 3 minutes on average to finish diagnosis. 

We asked the expert radiologist to analyze the collect-
ed gaze data. Before the analysis, he used the axial view 
to refresh his memory about the dataset. In the 3D view, 
he found a difference between him and novices. As in Fig. 
9(a), he showed more organized pattern compared to 
novices. His gaze pattern looked like a set of short vertical 
cylinders, implying that experts tend to fixate on the same 
location when he was scrolling throughout a contiguous 
set of images. On the other hand, there was no distinctive 
pattern in the novices’ gaze data (Fig. 9(c)). In case of in-
termediate radiologists, they showed gaze patterns 
somewhat in between the expert and the novices (Fig. 
9(b)). The expert explained that this difference was at-
tributed to their peripheral vision, which is similar to 
what the expert chest radiologist explained. 

 After comparing overall gaze patterns of the partici-
pants, he performed a spatial filtering using the thickness 
MPR function. He wanted to confirm a hypothesis, pro-
posed by one of the study participants, that radiologists 
tend to focus on the organ boundary. He could check the 
hypothesis right away using a dynamic query function of 
GazeVis. He increased the thickness of the coronal plane 
in the axial view and scrolled up and down to investigate 

 
Fig. 8. Gaze pattern difference of two experts in reading a chest CT 
scan. (a) Expert 1: Scroll down from top to bottom, jump back to the 
top, adjust the window setting, and scroll down again. (b) Expert 2: 
Scroll down from top to bottom, adjust the window setting, and scroll 
up from bottom to top. 
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the whole images. He examined whether the gaze points 
were densely distributed on the boundary of organs in 
the coronal view. This spatial filtering led him to reject 
the hypothesis since there were insufficient gaze patterns 
that supported the hypothesis. 

Using the range slider for temporal filtering, the expert 
narrowed down the range to examine the gaze data in 
temporal order. He recognized a pattern that the gaze of 
the expert or intermediates showed more vertical move-
ments compared to the novices. It was similar to the anal-
ysis result of chest radiologists, but the length of each unit 
cylinder is much longer than the chest case, which might 
be in part due to the anatomical difference of the two 
body parts. 

Abdominal radiologists used four different window 
settings during diagnosis since there are more organs in 
abdomen than in chest. Thus the abdominal expert also 
wanted to cluster the gaze points according to window 
setting, which was not supported in GazeVis. He com-
mented that grouping and filtering the gaze data accord-
ing to window setting can help with finding missed re-
gions more accurately since a window setting can either 
emphasize or hide a specific body part. This issue will be 
further elaborated in section 8.1. 

The expert also wanted to explore the gaze pattern dif-
ference among radiologists with different specialties. 
There are diverse groups of radiologists, including ab-
dominal, chest, and musculoskeletal radiologists, and 
each group might investigate the same body part differ-
ently with different gaze patterns. We believe that this 
kind of exploration could be efficiently supported in 
GazeVis with some additional functions such as color 
tagging of body parts. 

8 DISCUSSION AND FUTURE WORK 

In this paper, we presented GazeVis, a novel interactive 
3D gaze visualization tool. Chest and abdominal radiolo-
gists used GazeVis to collect their gaze data and analyzed 
them. Based on the lessons learned from two case studies, 
we present our thoughts and considerations on the fur-
ther improvement of GazeVis from some related research 
perspectives. 

8.1 Spatial Data Structure and Flexibility 
In GazeVis, we stored gaze information in the gaze field 
with the same resolution of the stimuli volume data. Such 
a spatial data structure for gaze makes GazeVis scalable 
and interactive even with a large number of gaze points. 
It is achieved in a way that the gaze field is computed by 
cumulating gaze scalar values at each voxel position and 
the computed gaze field is then visualized and manipu-
lated interactively by using the GPU-accelerated DVR 
technique.  

Another notable thing for the gaze field is that it can be 
interpreted as an attribute data for the stimuli volume 
data, which adds additional information (i.e. how long or 
often a given position was gazed during the measure-
ment), to the stimuli themselves (i.e. organs or lesions). 
We can combine the gaze field with the volume intensity 
of the stimuli data to improve classification: anatomic 
regions with larger gaze scalar value (i.e. regions gazed 
more frequently or longer) can be mapped to different 
color or opacity. In this way, the difference in gazing den-
sity becomes immediately apparent in the 3D rendering 
while the densely-gazed regions, which are likely more 
important in the diagnostic reading, are more clearly 
marked (Fig. 10). Such combination of the gaze field as an 
attribute data can be achieved by adopting the 2D transfer 
function approach [7], [13]. 

The gaze field has another advantage that it can store 
any kind of contextual information as long as the GPU 
memory can accommodate it. For example, the gaze field 
can store windowing values at each gaze point. Most of 
prior gaze analyses mainly focused on the location of the 
gaze; however, as discussed earlier, radiologists often 
read a single examination with a couple of window set-
tings for diagnosing different lesions. Chest radiologists 
examine the chest wall and overall lung structure under 
the mediastinum and lung window settings, respectively. 
If the windowing value, stored in the gaze field, is shown 
at each gaze point with an appropriate visual encoding, 
the 3D overview can provide researchers with a richer 
context. They could easily discriminate anatomic regions 
mainly examined in different window settings. In addi-
tion, they could easily notice inadvertently missed or un-
necessarily gazed regions in some window setting.  

 
Fig. 9. Gaze pattern difference between radiologists with different expertise level. (a) Expert showing more organized pattern vertically. (b) 
Intermediate showing a pattern in between expert and novice. (c) Novice showing no distinctive pattern with scattered gaze points.  
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8.2 Interacting with Contextual Data 
Adding contextual information in the gaze field requires 
further work on interaction design for interactive explora-
tion of such information. For example, with the current 
version of GazeVis, an expert chest radiologist in the case 
study had to playback the gaze data several times with a 
narrowed temporal range slider to perform gaze analyses 
regarding the windowing setting. Those analyses could 
be supported more efficiently by using a dynamic query 
interface for interactively selecting a range of windowing 
values or for choosing frequently used windowing values. 

Future research is also needed to develop visualiza-
tions for helping users find spatial or temporal gaze pat-
terns in a more comprehensive way. Visualizations to 
show marginal distributions of gaze data in each MPR 
plane can provide users with more contextual overviews. 
For example, if a histogram of gaze data is attached to a 
side of an MPR plane as shown in Fig. 11, users can im-
mediately check the gaze distribution of the current slice 
(in green) against that of entire slices (in gray). This fea-
ture has been implemented in GazeVis after the case stud-
ies. When other contextual data such as pupil size and 
windowing values are shown in the histogram alongside 
the gaze data on an MPR plane, it could help users to get 
even more valuable insights. 

Visualizations to show the temporal exploration se-
quence of 2D image slices could reveal interesting infor-
mation about individual variability in exploration. The 
navigation chart [1] (a plot of image slice number against 
time) is a good example, which could unveil not only the 
exploration sequence but also the speed of exploration. It 
could be incorporated into GazeVis as a part of a scented 
widget for the temporal query or as a separate interactive 
visualization. 

8.3 Improving Ecological Validity 
GazeVis can be made more ecologically practical in sev-
eral directions. First, instead of capturing gaze data in 
cases where a radiologist examines only a single image 
stack on a 2D view, it could support more complicated 
cases. In practice, radiologists often use multiple views 
(i.e. various combinations of 2D + 3D views) to review 
multiple series of image stacks together (e.g. multi-
phased cardiac CT scans). Gaze pattern analyses for those 

cases will pose many interesting challenges in visualiza-
tion and interaction design, and the effort to meet those 
challenges will make gaze visualization tools more practi-
cally relevant. 

In the case studies, the two most experienced expert 
radiologists, who analyzed the gaze patterns of each 
group of radiologists later, emphasized the importance of 
peripheral vision. They attributed the difference in gaze 
pattern between radiologists with different expertise level 
(i.e. organized pattern for experts and scattered pattern 
for novices) to the peripheral vision. They explained that 
the experts maintain their focus at the center of the area of 
interest in order to use their peripheral vision actively 
and that the novices who are not so experienced in read-
ing the images using their peripheral vision should take a 
busy look at every position in the image not to miss any 
region. 

Considering such importance of the peripheral vision 
in radiological reading, it might be meaningful to visual-
ize the areas covered by the peripheral vision surround-
ing the foveal fixations.  Radiologists exhibit individually 
different level of spatial sensitivity of the peripheral vi-
sion. Therefore, for more accurate comparison of gaze 
patterns between observers, it is necessary to take into 
account the individual difference in the spatial sensitivity 
of each observer’s peripheral vision. 

9 CONCLUSION  
We presented GazeVis, an interactive 3D gaze visualiza-
tion tool, for contiguous cross-sectional medical images 
that compose a 3D volume. The tight coupling of 2D and 
3D views enabled users to grasp overall 3D gaze patterns 
along with the detailed spatial context constructed from 
the stimuli images. We also introduced the gaze field as 
an efficient representation of gaze data to support dy-
namic spatial and temporal filtering of gaze data. Two 
case studies with 12 chest and abdominal radiologists 
revealed that differences in expertise level and preferred 
diagnosis strategy of radiologists led to significant differ-
ences in 3D gaze patterns.  
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Fig. 10. (a) 3D rendering of lung with gaze points superimposed as
independent objects. (b) 3D rendering of lung with gaze data used as
attribute data, enabling gaze analyses more focused on human
anatomy. 

 
Fig. 11. Gaze data distribution in an axial plane. Gray histogram 
rep-resents the distribution of all gaze points on entire slices. Green
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