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Historical cadastral maps are valuable sources for historians to study social and economic background of
changes in land uses or ownerships. In order to conduct large-scale historical research, it is essential to
digitize the cadastral maps. As being established in antiquity, however, they suffer from significant noise
artifacts attributed to hand-drawn cartography. In this paper, we propose a novel method of extracting
land regions automatically in historical cadastral maps. First, we remove grid reference lines based on
the density of the black pixel with the help of the jittering. Then, we remove land owner labels by con-
sidering morphological and geometrical characteristics of thinned image. We subsequently reconstruct
land boundaries. Finally, the land regions of a user’s interest are modeled by their polygonal approxima-
tions. Our segmentation results were compared with manually segmented results and showed that the
proposed method extracted the land regions accurately for assisting cadastral mapping in historical
research.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

From the past to the present, land tenure and parcels have been
crucial information for land administration such as land valuation
and taxation [1]. To maintain the property records of a country,
many nations adopted a cadastre survey, which involves the docu-
mentation of land registration such as location, area and owner-
ship [2,3]. Two famous historical examples are the Domesday
book from early England and the Napoleonian cadastre from 19th
century France. Both of them laid the historical foundation for
modern cadastral systems [4]. Historians use those records to
study the evolving histories of land parcellation in conjunction
with social and economic aspects of changes in land uses or own-
erships [5].

In Korea, the Kyujanggak Institute for Korean Studies (KIKS)
preserves a significant number of cadastres from the 17th to
19th century, which cover major cities and suburban areas in the
Joseon dynasty of Korean history [6]. A cadastral map has geo-
graphical boundaries of land ownership, while a textual cadastre
is a tabular data including survey direction, neighborhood, area
and owner (Fig. 1). Unfortunately, since they were recorded inde-
pendently, the integrated cadastral research has been difficult.
The researchers in the KIKS are currently working on constructing
a mapping between the textual cadastre and cadastral map (i.e.,
cadastral mapping), which were recorded for same areas but at dif-
ferent times. Through this mapping, they expect to understand the
temporal and spatial changes of the land ownership, development
status, and residential areas in an integrative manner.

A typical task involved in the cadastral mapping is to use sticky
notes and highlighters to mark the mapping from a land owner’s
name in the textual cadastre to the corresponding land region in
the cadastral map [7]. Since this task is done on a physical copy
of each cadastral map, it is difficult to undo if the mapping result
turns out to be wrong. Also, such manual work is cumbersome
for editing and searching the existing mappings. And the large
quantity of cadastres makes maintenance tasks laborious.

To facilitate the cadastral mapping task, it is desirable to digi-
tize the historical cadastral maps by allowing land regions to be
searchable and manageable. Accordingly, there have been many
works in building historical geographical information system
(GIS) to assist cadastral mapping. A notable example is the Great
Britain historical GIS [8]. It holds the changing boundaries of
administrative units with historical statistics recorded from 1840
to 1970. Its GIS database is structured in a way that the land
boundaries, if exist, are provided for specified dates. It was con-
structed by combining geographical maps with textual sources
that provided specific dates for boundary changes. Another exam-
ple is the China historical GIS which covers 2000 years of dynastic
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Fig. 1. A pre-modern cadastre in KIKS – cadastral map (top) and textual cadastre (bottom).
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history in China [9]. Because of the poor accuracy in the records of
many administrative regions, it did not attempt to reconstruct the
exact boundaries. Instead, it used the locations of administrative
units and their relative positions to approximate their boundaries.
By integrating statistical data and geospatial data collected at dif-
ferent times (e.g., textual cadastre and cadastral map) into a single
computer system, this system expedites historical research such as
geo-referenced demographic study [10]. However, building those
systems have never been easy particularly with historical cadastral
data. It involves manual vectorization of spatial data into points,
lines and polygons, which is a highly time-consuming and costly
process [5]. To alleviate this problem, we need a more efficient
way to perform the vectorization of geographical information.

This paper proposes a segmentation method that extracts the
land regions accurately in historical cadastral maps. We use the
cadastral maps from the KIKS (Fig. 1), which are currently being
used by the Korean historians. As being established in pre-modern
era, the maps suffer from significant noise artifacts attributed to
hand-drawn cartography. They have not only compact grid lines
and label characters, which are considered noise, but also eroded
region boundaries. We designed a staged segmentation pipeline
by devising a series of image processing techniques. We first elim-
inate noises in a scanned map image by removing grid reference
lines based on the density of the black pixel with the help of the
jittering. Then, we remove land owner labels by considering mor-
phological and geometrical characteristics of thinned image. Then,
we subsequently reconstruct broken land boundaries which are
originated from both the eroded map and noise reduction phase.
Finally, we extract the land regions of user’s interest by generating
their polygonal approximations.

The remainder of this paper is organized as follows. The next
section describes the proposed method of automatically extracting
the land region. Section 3 presents the experimental results. Sec-
tion 4 describes one of applications for assisting historical research
using the proposed method, followed by conclusion and future
work in Section 5.

2. Related work

In the traditional practice of cartography, maps such as topo-
graphic or cadastral maps were hand-drawn on papers [11]. Now-
adays, due to the scalability and efficiency, geographical
information for urban planning or resource management is pro-
cessed through computer systems [12]. With the recent prolifera-
tion of GIS applications, there has been an increasing need for
converting existing analog maps to vector forms [13]. The vector
data has many advantages over the raster data by encoding the
topological structure of a map only in the form of points and lines.
In addition, it takes less storage. It is not limited by spatial resolu-
tion, and is easier to manage and update [14].

The digitization is often performed manually either through a
digitizing tablet with a paper map on its surface or an on-screen
digitization using a scanned map [15]. Since the manual digitiza-
tion is time consuming with intrinsic human errors, more ad-
vanced semi-automated or fully-automated procedures of the
extraction of cartographic information from maps have been pro-
posed [16]. Unfortunately, a fully-automatic vectorization is still
a challenging task as types of maps vary considerably and human
verification is almost always necessary [17]. In particular, it is con-
siderably difficult to accurately vectorize historical maps because
of its poor graphical quality caused by scanning or image compres-
sion processes, as well as the aging of the archived paper material,
which often causes false coloring, blurring or bleaching problems
[16,17].

A typical automatic vectorization procedure involves (a) digiti-
zation of paper documents using a scanner, (b) filtering, (c) thres-



Fig. 2. Pipeline of cadastral map segmentation: (a) original map image, (b) removal of grid lines, (c) removal of labels and pixel fragments, (d) reconstruction of boundaries,
(e) selection of a region of interest, (f) generation of a polygon approximation.

Fig. 3. Hough transform being applied to a cadastral map image: (a) HT with high peak threshold, (b) HT with low peak threshold.
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holding, (d) thinning and pruning the binary image, and (e) raster
to vector conversion [18]. Basic vectorization methods for raster
line images can be roughly classified into three main categories:
Hough transform (HT)-based, thinning-based, and contour-based
methods [19]. While HT-based method is the fastest, the thin-
ning-based method generates the best quality for the preservation
of the line geometry and is comparatively faster in comparison to
other methods [14]. Although the thinning-based method does
not preserve the line-width, its advantage of maintaining the topo-
logical structure, including connectivity, adjacency, and relative
position, is more valuable when vectorizing the spatial data of car-
tographic maps [12].

Lam et al. [20] gave a comprehensive survey of thinning algo-
rithms, while non-thinning algorithms were reviewed in [21]. After
the skeleton of an image is produced from thinning, a polygoniza-
tion is performed on the skeleton points to approximate the de-
tected lines and eliminate redundant points [22]. Postprocessing
is often necessary to handle problems including broken graphics
to convert low-level vectors into fine graphic objects [23]. While
a crude vectorization such as skeletonization methods focuses on



Fig. 4. Pattern matching approach by filtering with a kernel: (a) a filtering kernel, (b) original image, (c) filtered image.

Fig. 5. Removal of a vertical grid line: (a) construction of a scan line, (b) jittering of the scan line, (c) recognition of a grid line based on the density of black pixels, (d) filtering
non-grid pixels by examining neighboring pixels.

N.W. Kim et al. / J. Vis. Commun. Image R. 25 (2014) 1262–1274 1265
the shape preservation, more advanced researches have been de-
voted to improve and refine the quality of vectors [24–28].

While these previous approaches laid the groundwork for the
recognition of maps, these methods were far from providing opti-
mal solutions. Most of these algorithms employed vectorization
models that were suited for more generic drawings including
mechanical, electronic, and construction drawings and did not take
the complex characteristics of map into account [13]. To overcome
these limitations, segmentation and vectorization of maps have
Table 1
Pseudocode for the removal of grid lines.

Step 1. Removing grids (vertical grid)

1: procedure REMOVGRID (bw, grid_width, thresh, jitter_range)
2: FOR each scan line
3: FOR dt = - jitter_range to jitter_range
4: jittered = create_line(grid_width, dt)
5: C(dt) = collect_intensity (jittered)
6: ENDFOR
7: [max, index] = find_max(C)
8: IF max > thresh
9: jittered = find_line(index)
10: FOR each pixel(p) in jittered

IF neighbor(p) = white
p = white

ENDIF
ENDFOR

11: ENDIF
12: ENDFOR
13: RETURN bw
been studied. However, no analytic solution has been proposed
yet and most existing methods employed ad hoc rules based on
heuristics [29]. It is widely accepted that fully automatic solution
is not achievable and customized methods using contextual
knowledge can lead to the significant improvement in performance
[13,30–32].

Many automatic vectorization methods designed for processing
maps have been proposed. Wu et al. extracted contour lines from
topographic map-based cartography and graphics knowledge such
as coordinates and symbol system [32]. Janssen et al. exploited the
knowledge of cartographic rules to improve and correct the result
of vectorization [33]. Similarly, Lee et al. constructed a knowledge
base, where cartographic features are contained based on different
types of maps, to identify the characteristics of the input map im-
age and apply various image-processing operations to vectorize it
[12]. Frischknecht et al. used a knowledge-based template match-
ing to extract areal objects from the scanned official Swiss topo-
graphic map [34]. There were other approaches that attempted
to separate the map into constituent layers and recognize the fea-
tures in different layers on the basis of symbol-specific geometrical
and morphological attributes [35–37].

In most case, automatic solutions usually work well for maps
with high-quality images. For maps with low-quality images, most
prevalent and practical solutions are interactive and semi-auto-
matic methods. Most common way to interactively vectorize linear
features is the tracking of a line from a user-specified point and the
use of the additional manual interventions in case where the auto-
matic tracking fails [38,15]. Bucha et al. supported snapping seed
points and tracking area objects [39]. Other techniques involve



Fig. 6. Removal of characters: (a) image after grid removal, (b) thinned image with connected components, (c) examination of size, aspect ratio and branch point, (d) removal
of detected characters.

Table 2
Pseudocode for removal of characters.

Step 2. Removing letters

1: procedure REMOVELETTERS (bw, brch_pts, box_size, ratio)
2: ccs = find_connected_components (bw)
3: FOR each connected component (cc)
4: box = find_bounding_box(cc)
5: [left, right] = get_side_length(box)
6: IF (left > ratio�right) or (right > ratio�left)
7: continue
8: ENDIF
9: IF (left � right) > box_size
10: continue
11: ENDIF
12: num_brch_pts = find_branch_points (cc)
13: IF (num_brch_pts P brch_pts) then
14: erase_connected_component(bw, cc)
15: ENDIF
16: ENDFOR
17: RETURN bw

Table 3
Pseudocode for the reconstruction of land boundaries.

Step 3. Reconstructing land boundaries

1: procedure CLOSEHOLES (bw, ray_len, lookup)
2: end_pts = find_end_points(bw)
3: FOR each end point (ep) in end_pts
4: FOR each prev pixel (pp) from ep to lookup
5: dir += calc_dir_vec(pp, ep)
6: ENDFOR
7: search = construct_search_space(dir, ray_len)
8: FOR each end point (p) in search
9: dist = distance(ep, p)
10: ENDFOR
11: cp = find_closest_point(dist)
12: connect(bw, ep, cp)
13: ENDFOR
14: RETURN bw
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users in editing and cleaning unwanted details after segmenting
the map and before the vectorization [16,17,30,31].

There are also many commercial software solutions such as
MapGIS, R2V, VPStudio, and RxAutoImage. They still suffer from
jagged and discontinuous dithering. And they also require that
noises have to be removed before the vectorization. Lacroix pre-
sented the analysis of raster-to-vector softwares and proposed an
improvement strategy in consideration to a map segmentation
problem [40]. Dharmaraj also provided a comprehensive review
on commercial vectorization softwares [14].
Fig. 7. Reconstruction of land boundaries: (a) detection of end points, (b) determination
eight possible directions, (d) connection to the nearest end point; it is possible that end
In this paper, we focused on extracting polygonal land regions
enclosed by boundary lines. Unfortunately, previous methods can-
not be directly applied to our problem. First, they rarely consider
preprocessing by assuming high-quality input images. In addition,
our datasets are completely different from those used in the previ-
ous methods. For example, for contour reconstruction, most of
them focused on topographic maps where contour lines never
intersect each other and form closed loops. Inspired by previous
works and following the guideline that recommends incorporating
contextual knowledge in a document [22], we developed a custom-
ized vectorization pipeline for the cadastral maps of the Joseon dy-
nasty in Korea.
of the ray direction by considering previous pixels, (c) defining a search area among
points can be connected to undesirable counterparts.



Table 4
Pseudocode for the generation of polygons.

Step 4. Generating polygons

1: procedure GENERATEPOLYGON (bw)
2: [x, y, num_pts] = mouse_input (bw)
3: polygons = []
4: regions = []
5: for i = 1:num_pts do
6: region = seeded_region_growing(bw, x(i), y(i))
7: region = bwmorph(region, ‘close’)
8: polygon = min_peri_poly(region)
9: polygons = polygons + polygon
10: regions = regions + region
11: end for
12: RETURN (regions, polygons)
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3. Method

The proposed segmentation method is conducted in four
stages as shown in Fig. 2. Beforehand, we preprocess the cadas-
tral maps by scanning and resampling (Fig. 2a). In the first stage,
we remove grid lines by constructing scan lines and classifying
them based on the density of black pixels (Fig. 2b). Second,
the label characters, which describe the owner names of land
regions, are removed based on their morphological and geomet-
rical characteristics (Fig. 2c). Third, we reconstruct land
boundaries by connecting end points of broken line segments
(Fig. 2d). Finally, land regions are extracted into polygons using
seeded region growing and minimum-perimeter polygon algo-
rithm [41] (Fig. 2e and f).

3.1. Preprocessing

The cadastral maps are hand-drawn maps. To be fed into our
segmentation pipeline, we first scan them into digital images.
The original map is drawn on a rectangular box, but it is often
not axis-aligned. If a scanned map is severely tilted, we manually
align the image by rotating it such that vertical and horizontal grid
lines on the map are close to be orthogonal. Such well-aligned im-
age is preferred when a scan line is matched into the grid line. The
image is initially scanned in a high-resolution grayscale format
Fig. 8. Evaluation of the segmentation method: (a) automatically segmented land
(e.g., 5204 � 6513), which requires substantial time to process.
We lower the resolution to 2000 pixel width and its proportional
height in order to shorten the processing time while maintaining
accuracy. Finally, we convert the image into a binary image to
take advantage of morphological operations, which include thin-
ning, end point detection, and connected component labeling, in
the subsequent character removal and boundary reconstruction
steps. In the input image, black pixels correspond to the
foreground and white pixels correspond to the background. Thus,
it can be easily segmented using a global thresholding technique.
We used Otsu’s method to compute a global threshold for the
binarization.
3.2. Removal of grid lines

In this step, we remove dense grid lines in cadastral map
images. The grid is composed of a series of horizontal and vertical
lines, and is independent of land regions. The grid lines are regu-
larly placed showing the periodicity of occurrence. Although this
grid might have been a good layout reference for the cartographer,
it is regarded as a noise that makes it more difficult to extract the
land regions automatically.

Quackenbush [42] provides a comprehensive survey of straight
line detection techniques. Since the grid is not correlated with land
regions, such content-independent algorithms could be employed
for detecting and removing lines in an image. Unfortunately, they
typically work best on clean images and are very sensitive to var-
ious types of noise. For example, Fig. 3 shows our initial trial to de-
tect grid lines using Hough transform (HT). With the high peak
threshold, HT missed a lot of grid lines (Fig. 3a). Also, by lowering
the peak threshold, HT failed to detect correct grid lines by finding
diagonal lines instead of connecting their intersections (Fig. 3b).
Fig. 4 shows the grid detection result by a kernel based method
[42]. The kernel was designed to find a grid pattern (Fig. 4a) but
was also unable to capture the exact grid lines (Fig. 4c). In lieu, it
severely degraded region boundaries making the map almost
illegible.

We identified two main challenges for the grid removal: (1) grid
lines are severely broken due to the low quality of the map images,
(2) the grid lines are overlapped with text and land regions, making
regions, (b) manual segmentation of a land region in the original map image.



Fig. 9. The result of the segmentation method applied to the fourth dataset: (a) The cadastral map is scanned into a binary image, (b) land regions are extracted into polygons.
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the separation difficult, and (3) the line width, gap, and slope are
irregular. Therefore, it is very difficult to detect the grid lines with-
out contextual information.

There have been previous researches that leverage the contex-
tual information to remove background lines from binary docu-
ment images [43,44]. Their algorithms are based on the
observation that the lines are parallel and the gaps between any
two neighboring lines are roughly equal. However, they have lim-
itations as well in that the estimation error of the modeling param-
eters (e.g., line slope, line gap, and the position of the first line) is
accumulated throughout the process. In addition, their input
images are rather cleaner than ours and the background lines are
printed whereas our lines were hand-drawn.

For the grid removal, we construct scan lines of varying widths
horizontally as well as vertically to detect grid lines (Fig. 5a). For
each scan line, we calculate the density of black pixels by summing
up the number of black pixels over total number of pixels in the
scan line. If this density is above a threshold, we regard the scan
line as a grid line and clear the black pixels along the scan line
(Fig. 5c). This density threshold is negatively correlated with the
width of the scan line. The wider the line width is, the lower the
density threshold is. Considering the image resolution, the optimal



Fig. 10. The enlarged image of the sub-region result of the segmentation method applied to the fourth dataset (Fig. 9). It shows the resulting images at intermediate steps of
the segmentation pipeline: (a) the cadastral map is scanned into a binary image, (b) grid lines are removed, (c) thinning is applied, (d) characters and pixel fragments are
removed, (e) land boundaries are reconstructed, (f) land regions are extracted into polygons.
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values of the density threshold and scan line width were empiri-
cally determined as 30% and 2 pixels, respectively. Since lines are
severely broken, it is rare that the black pixels constitute more
than about one third of the total pixels in a scan line.

However, due to the low quality of the original map and slanted
scanned images, the grid lines are not always orthogonal to the
sides of the image. Therefore, we perform the jittering of scan lines
to compensate for the skewed grid lines (Fig. 5b). Although an in-
creased jittering range could take care of more slated lines, it ad-
versely affects the computational performance. Based on this
observation, we chose to use 40 pixels for the jittering range by
tilting the scan line pixel by pixel.

Since no prior knowledge on land regions is available for now,
the grid removal algorithm removes the boundaries of land regions
that overlap with the grid lines. To alleviate such unintentional re-
moval, we examine the neighboring pixels before removing a pixel
to determine if the pixel is a part of land boundaries (Fig. 5d). If
black pixels exist around the pixel under consideration, we keep
it intact. Pseudo code for the removal of grid lines is shown in
Table 1.



Table 5
Accuracy assessment results of land region extraction.

Dataset Measure Efp Efn Earea Esim

1 AVG 1.159 1.560 �0.402 1.362
STD 0.712 0.694 1.038 0.476

2 AVG 1.151 1.826 �0.675 1.494
STD 0.813 0.896 1.198 0.613

3 AVG 2.417 2.334 0.083 2.372
STD 1.325 0.881 1.636 0.764

4 AVG 1.825 2.631 �0.806 2.238
STD 0.899 0.915 1.092 0.726

5 AVG 1.528 2.730 �1.092 2.127
STD 0.362 1.234 1.168 0.816

6 AVG 1.245 2.676 �1.227 1.977
STD 1.169 1.316 1.190 1.175

7 AVG 2.775 2.738 0.037 2.755
STD 1.521 1.307 1.754 1.107

8 AVG 2.743 2.919 �0.022 2.799
STD 1.948 1.463 1.981 1.462

9 AVG 1.900 2.811 �0.746 2.340
STD 0.934 1.060 1.723 0.693

10 AVG 1.839 2.952 �1.113 2.407
STD 1.516 1.112 2.208 0.737

Fig. 11. Jigsawmap system being used by historians to construct a mapping between the textual cadastre and the cadastral map.
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3.3. Removal of characters

Next, we remove label characters and pixel fragments. The frag-
ments are salt-n-pepper noises caused by the grid removal process
as well as the poor quality of the original map. The labels are Chi-
nese characters written inside each land region. Although the la-
bels were hand-written, the size of characters tends to be
regular. They often touch land boundaries and even themselves,
particularly for small land regions. The labels give important clues
about the identity of owners of land regions, but they are obstacles
in extracting land regions as is the same case with grid lines.

Handwritten character recognition, which could be used for
removing the labels, has long been researched. However, the sim-
ulation of human reading is still a challenging problem [45–47].
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The recognition rates of most techniques are sensitive to the age
and quality of input documents. Thus, they typically require pre-
processing steps to eliminate noises. Although we managed to re-
move grid lines in the cadastral maps, the remaining labels are
even difficult for human to read. They were degraded since the inks
were often spread. Sometimes, they became broken by the errors
of the grid removal process. All these adverse conditions make
them unfavorable for the conventional recognition techniques. For-
tunately, we do not actually have to recognize the characters, but
merely need to detect them for removal.

Many methods have been proposed to address the problem of
extracting text from graphical documents, and can be divided into
three main categories: morphological analysis, connected compo-
nent analysis, and multi-resolution analysis [48]. Our work is
based on the connected component analysis and largely inspired
by the previous work by Fletcher and Kasturi [46] and a follow-
up work by Tombre et al. [48], which used decision rules on area
and dimensional ratio of connected components to separate text
from graphics. To remove the characters, we use geometrical and
morphological characteristics, which include the size, aspect-ratio,
and branch points, without using any semantic information. In or-
der to extract such features, we first apply 2D thinning [49] to the
result image after the grid removal for the detection of branch
points. We then find connected components [50] of the characters
and calculate their bounding boxes (i.e., top-left and bottom-right
points). For each connected component, we examine the size and
aspect ratio of its bounding box and ignore it if they are not within
the defined threshold. To be recognized as a character on the map,
the aspect-ratio has to be close to a square (Fig. 6b). To deal with
the connected characters, however, we increase the aspect-ratio
threshold to accept those whose width is at most two times larger
than the height. Finally, we eliminate remaining components
whose number of branch points is above a chosen threshold
(Fig. 6c). Since the Chinese character has many curves crossing
each other, it could have more branch points compared to other
elements in the image. In addition to characters, pixel fragments
are removed based on the number of pixels in each connected
component; if it is less than 15 pixels, the fragment is considered
as a kind of salt-n-pepper noise hence removed from the image.

We determine the threshold values based on the manual
inspection of representative sample images. The optimal parame-
ter values may change depending on the selection of image resolu-
tion. For the removal of characters, we used the characteristics of a
letter as having at least three branch points, above 40 � 40 size and
at most 1:2 aspect ratio for 2000 pixel wide image. Pseudo code for
the removal of characters is shown in Table 2.

3.4. Reconstruction of land boundaries

Next, we reconstruct land boundaries by connecting broken line
segments. Such fragmentation was generated due to not only the
noise in the original map but also the removal of overlapping pixels
with grid lines and characters. It is not unusual that cartographers
make annotations such as land names, symbols or grids on histor-
ical maps. They write this information on top of the map or often
intentionally erase a part of it to make such notes. Such supple-
mental information generates broken lines when being removed
in the vectorization process. Also, the noise in the original or
scanned map limits the efficiency of the vectorization by producing
gaps. It is necessary to restore the broken boundaries into closed
loops in order to apply the final segmentation with a flood-fill
operation in the next step.

Methods for reconstructing disconnected lines can be catego-
rized into image-based approach and geometric-based approach
[11]. In geometric-based approach, the gap filling is modeled as
the more general problem of curve reconstruction [18]. Salvatore
and Guitton use a Delaunay triangulation, where the Delaunay
edges satisfying the topology of the contour lines are filtered, to
vectorize the thinned binary image [18]. Pouderoux and Spinello
proposed a parameterless reconstruction scheme based on the gra-
dient orientation field of the available contour lines [51]. Other
researchers used A⁄ algorithm to find a shortest path that was in
turn used to close the gaps [52,53].

Image-based approaches are mostly based on perceptual princi-
ples to connect two disconnected segments with two primary con-
ditions: proximity and continuity [18]. Arrighi and Soille found the
extremities of contour lines and used a combination of a distance
and direction criteria for reconnecting broken lines [54]. This ap-
proach was used in [11]. Eikvil et al. used a line-tracing algorithm
to reconstruct contour lines. When gaps occur, they assume there
is only one possible continuation and cross the gaps by searching
from the point at the end of the line within a sector around the cur-
rent direction [55].

Excessive grids in our datasets produce small branches along
the land boundaries, making the geometric-based approach not
suitable for our problem. Thus, we take an image-based approach
similar to [55]. First, we find end points of all connected compo-
nents in the result image of previous steps (Fig. 7a) using the hit-
and-miss transform [56]. For each end point, we shoot a ray whose
direction is most likely to find the neighboring boundary fragment
(Fig. 7b). To determine the ray direction, we look up previous pix-
els of the selected end point. We calculate the direction vector
from each look–up pixel to the end point under consideration.
The average direction is then used as a ray direction. We restrict
the direction to 8-connectivity (Fig. 7c). Since it is rarely possible
for this single ray to hit the counterpart end point of the neighbor-
ing boundary fragment, we parameterize the thickness of the ray
to widen the search area. The shape of the search area is a right tri-
angle where the source vertex of the ray is located at the end point.
Within the search space, we find candidate end-points and simply
connect the nearest one to the end point (Fig. 7d). Pseudo code for
the reconstruction of land boundaries is shown in Table 3.
3.5. Generation of polygons

The final step is to extract land regions from the reconstructed
image. Our method engages a user to select a region of interest and
then uses a seeded region growing (i.e., flood-fill) to derive a pixel
set of the selected region. It is possible that fragments survived
previous steps could result in holes in this step. To remove such
holes, we perform a morphological closing operation. We then
use a minimum-perimeter polygon algorithm [41] to retrieve an
approximate polygonal boundary of the region. At the end, the ver-
tices of the polygon are saved in a csv file. We repeat this process
until all the interested regions are extracted or the user is no longer
able to provide a promising seed that leads to a segmented region.
Pseudo code for the generation of polygons is shown in Table 4.
4. Experimental results

We tested our segmentation method on an Intel i7 laptop sys-
tem with 1.73 GHz and 4 GB of memory. We prepared ten pre-
modern cadastral maps of Mamyeong region around 18th century,
all of which were from KIKS. The maps were scanned using Epson
Expression 1680 scanner with 600 dpi resolution and manually
axis-aligned as accurately as possible. Although our method is
not limited to a certain image size, we adjusted the image width
to 2000 pixel and let the height change proportionally (the pixel
size was all 0.307 � 0.307 mm) to achieve the optimal perfor-
mance without sacrificing overall accuracy. All datasets suffer from
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poor quality and noise artifacts attributed to their age and hand-
drawing.

The parameters for each intermediate algorithm were the same
for all datasets. For the removal of grid lines, we used 2 pixel wide
grids, 30% threshold, and 40 pixel jittering range. For the removal
of letters and fragments, we used 3 minimum branch points,
40 � 40 box size, and 15 pixels for the fragment size. For the recon-
struction of boundaries, we used 25 pixel-length ray and 5 pixels
for look-up. These values were empirically determined based on vi-
sual inspection for ten training datasets, which are different from
the ten test datasets. The parameters are more sensitive to image
resolution which we fixed in the preprocessing stage than to the
image content.

To validate the accuracy of our segmentation method, we devel-
oped an interface that enables us to manually segment land re-
gions in the datasets (Fig. 8). For each dataset, we specified as
many vertices as necessary along the boundary of each region.
The vertices were then used to produce a polygon which closely
approximates the land region. The manual segmentation was done
on the original scanned map images. In this way, we obtained the
manually segmented land region, which serves as the ground truth
for the accuracy assessment of our segmentation method.

Fig. 9 shows the result of the segmentation method applied to
the fourth dataset with the scanned cadastral map. And Fig. 10
shows the enlarged image of the sub-region outcome of each stage
in the segmentation pipeline for the fourth dataset. It appears that
our method significantly remove irrelevant noises and accurately
identified land regions from the background. We first preprocessed
the cadastral map into the resampled and binarized image as
shown in Figs. 9a and 10a. It is apparent that the image is almost
illegible because of the compact grid lines. Fig. 10b show that most
grid lines are successfully removed, while leaving the characters
and pixel fragments. They were subsequently removed in the next
stages as shown in Fig. 10c and d. Fig. 10e shows the reconstructed
boundaries. Finally, Figs. 9b and 10f show the segmented regions.
Although it sometimes failed to identify small regions, most of
the regions were successfully extracted. The labels touching
boundaries are more prevalent in the small regions and are not re-
moved by our method, causing errors in the reconstruction phase.

We evaluated the segmentation accuracy of our method by
measuring the discrepancy between the manually segmented re-
gions and automatically segmented ones. To assess the accuracy
of our segmentation method, we employed four different evalua-
tion metrics as follows:

Efp ¼
numfAautog � numfAauto \ Amanualg

numfAmanualg
� 100%; ð1Þ

Efn ¼
numfAmanualg � numfAauto \ Amanualg

numfAmanualg
� 100%; ð2Þ

Earea ¼
numfAautog

numfAmanualg
� 1

� �
� 100%; ð3Þ

Esim ¼ 1� 2
numfAauto \ Amanualg

numfAautog þ numfAmanualg

� �� �
� 100% ð4Þ

where Aauto is the set of pixels in the automatically segmented land
region. The false positive error, Efp, is the ratio of the set of pixels, in
the automatically segmented region but not in the manually seg-
mented region, to the set of pixels in the manually segmented re-
gion. The false negative error, Efn, is the ratio of the set of pixels,
in the manually segmented region but not in the automatically seg-
mented region, to the set of pixels in the manually segmented re-
gion. Earea is the area measurement error and the similarity error,
Esim, is defined using the similarity index [57].
Table 5 summarizes the accuracy evaluation result of ten data-
sets. The average number of land regions for the datasets is 38 and
the average and standard deviation of the errors are shown in the
table. All the errors are less than 5%, showing that our method is
indeed an accurate segmentation scheme for the cadastral maps.
For most datasets, Efn was higher than Efp, and Earea had negative
values. This means that Amanual is generally larger than Aauto. Based
on the examination of the evaluation result images, we observed
that the segmentation error occurs on the boundaries, which de-
crease the total area measurement for the automatically seg-
mented region. During the preprocessing steps, land boundaries
are often degraded. The resulting effect is the loss of accurate area
measurement as the reconstruction step softens original bound-
aries. The granularity of the manual segmentation (i.e., the number
of vertices) also affected the evaluation result.

5. Application

To demonstrate the practicality of our segmentation method,
we developed an interactive visualization system, JigsawMap,
which assisted the cadastral mapping task between a cadastral
map and a textual cadastre [58].

5.1. User interface

The application provides two separate views: cadastral map
view and textual cadastre view (Fig. 11). The user can analyze
these views side by side and perform the mapping task. In the
cadastral map view, land regions, which are automatically gener-
ated by our segmentation method, are visualized on top of the ori-
ginal map image. In addition, we provide a sketch-based tool for
users to manually edit segmented land regions. On the right side,
we visualize textual cadastres using a node-link graph layout. A
node represents a land region and an edge indicates a survey direc-
tion. The layout is generated using survey direction, owner names
and neighbor information. The land region on both view are color
coded by the types of land use. The system also supports the over-
lay function, which lays the node-link diagram on the cadastral
map. Using this function, a node will be placed on the correspond-
ing land region.

5.2. Mapping interaction

To perform the cadastral mapping, a user selects a land region
from the cadastral map view and another region (i.e., node) from
the textual cadastre view. The user can exploit contextual informa-
tion, such as owner name, size, shape, and neighborhood owners,
to decide whether both indicate the same region. For example, if
the selected land regions share the owner name, similar size and
same neighborhood, it is more likely that they are the same region.
Once being convinced, the user can perform ‘associate’ action to
place a marker indicating that the matching has been done. The
user will continue this process until all the regions are matched be-
tween the cadastral map and textual cadastre.

6. Conclusion

In this paper, we presented a novel segmentation method that
combined a series of image processing algorithms to extract land
regions automatically from historical cadastral maps. In the first
stage, we remove grid lines by constructing scan lines and classify-
ing them based on the density of black pixels. Second, the label
characters, which describe the owner names of land regions, are
removed based on their morphological and geometrical character-
istics. Third, we reconstruct land boundaries by connecting end
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points of broken line segments. Finally, land regions are extracted
into polygons using seeded region growing and minimum-perime-
ter polygon algorithm.

Since most historical cadastres were generally hand-drawn and
degraded, it has rarely been attempted to automate the vectoriza-
tion of the maps that involves generating polygons from land re-
gions. For large scale historical research, however, it is inevitable
to digitize the maps, or construct a historical GIS, which typically
involves the manual vectorization of geographical elements in
the maps. Our method is designed to reduce significant time and
effort that goes into such time-consuming, yet invaluable, vector-
ization process of the land regions. We contributed a series of im-
age processing algorithms. All together tackled the segmentation
problem that was otherwise difficult to handle using conventional
noise reduction and reconstruction techniques.

The experimental results and interactive application of this
study demonstrated that the proposed method accurately ex-
tracted the land regions and was useful for large scale historical re-
search. We applied our method to ten sets of representative maps
and compared the automatically segmented results with the man-
ually segmented regions resulting in the average absolute area er-
ror of 0.62 ± 0.61%. The method was integrated with the
application and helped the historians easily identify the land
regions.

Though it is encouraging, a number of limitations remain as
well. First, our method cannot distinguish between grid lines and
land boundary if they are completely overlapping each other. It is
also unable to accurately segment labels that overlap with land
boundaries; there are previous works that attempt to extract over-
lapping text from graphics [59,60], but their algorithms are based
on printed and undistorted text. These edge cases in turn affect
the result of reconstructing boundaries. To address this issue, we
plan to explore additional features for characterizing the grid lines
and text labels and also, instead of the current deterministic ap-
proach, employ probabilistic learning techniques such as [61] to
enhance the quality of the noise removal. Another avenue for fu-
ture work is to adopt a level set approach that produces an evolv-
ing contour fitting the boundary in place of connecting broken
boundaries in pixel level. Finally, by focusing on segmenting land
regions, we do not address other geographical elements such as
creek and mountain. This remains as an interesting challenge for
future research.
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