
Appendix A: Detailed Algorithms for Section 4

Steadiness and Cohesiveness (Section 4.2)

Algorithm 1 Computing Steadiness and Cohesiveness
1: Input The set of points 𝑃 = {𝑝1, 𝑝2,⋯ , 𝑝𝑛} in dataset where |𝑃| = 𝑛
2: Input Each point 𝑝𝑖’s original coordinate ℎ𝑖 and projected coordinate 𝑙𝑖
3: Input Number of the nearest neighbors 𝑘, walking number 𝑤, iteration number 𝑖𝑡𝑒𝑟
4: Input Hyperparameter functions dist, dist_cluster, extract_cluster, clustering
5: Output Steadiness or Cohesiveness
6: 𝐷+, 𝐷− ← computeDissimilarityMatrix(𝑛, {ℎ1,⋯ , ℎ𝑛}, {𝑙1,⋯ 𝑙𝑛}, dist) ▷ Step 1
7: 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠 = [] ▷ initialize empty array
8: for 𝑖 ← 1 to 𝑖𝑡𝑒𝑟 do ▷ Step 2
9: 𝑠 ← random([1, 𝑛]) ▷ the index of random seed point
10: 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠.concat(computePartialDistortion(𝑠, 𝑃, 𝐷+, 𝐷−, clustering, extract_cluster))

11: 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑆𝑢𝑚 ← 0, 𝑤𝑒𝑖𝑔ℎ𝑡𝑆𝑢𝑚 ← 0
12: for (𝑚𝑖, 𝑤𝑖) in 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠 do ▷ Step 3
13: 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑆𝑢𝑚 ← 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑆𝑢𝑚 + 𝑚𝑖 ⋅ 𝑤𝑖
14: 𝑤𝑒𝑖𝑔ℎ𝑡𝑆𝑢𝑚 ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑆𝑢𝑚 + 𝑤𝑖

15: return 1 − 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑆𝑢𝑚/𝑤𝑒𝑖𝑔ℎ𝑡𝑆𝑢𝑚
16:
17: procedure computeDissimilarityMatrix(𝑛, {ℎ1,⋯ , ℎ𝑛}, {𝑙1,⋯ 𝑙𝑛}, dist)
18: Initialize 𝑛 × 𝑛matrix 𝐻, 𝐿
19: for 𝑖 ← 1 to 𝑛 do
20: for 𝑗 ← 1 to 𝑛 do
21: 𝐻𝑖𝑗 ← dist(ℎ𝑖, ℎ𝑗)
22: 𝐿𝑖𝑗 ← dist(𝑙𝑖, 𝑙𝑗)
23: 𝐻 ← 𝐻/𝐻𝑚𝑎𝑥, 𝐿 ← 𝐿/𝐿𝑚𝑎𝑥 ▷ normalize 𝐻, 𝐿 by their max elements
24: 𝐷 = 𝐻 − 𝐿
25: Initialize 𝑛 × 𝑛matrix 𝐷+, 𝐷−

26: for 𝑖 ← 1 to 𝑛 do
27: for 𝑗 ← 1 to 𝑛 do
28: 𝐷+

𝑖𝑗 ← 𝐷𝑖𝑗 if 𝐷𝑖𝑗 > 0 else 0
29: 𝐷−

𝑖𝑗 ← −𝐷𝑖𝑗 if 𝐷𝑖𝑗 < 0 else 0
30: return 𝐷+, 𝐷−

31:
32: procedure computePartialDistortion(𝑠, 𝑃, 𝐷+, 𝐷−, clustering, extract_cluster)
33: 𝑃𝑠 ← extract_cluster(𝑝𝑠, 𝑃) ▷ 𝑝𝑠 ∈ 𝑃𝑠, 𝑃𝑠 ⊂ 𝑃
34: 𝒞 ← clustering(𝑃𝑠)
35: 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠 ← [] ▷ initialize empty array
36: for 𝐶𝑖 in 𝒞 do
37: for 𝐶𝑗 in 𝒞 do
38: 𝛿ℎ, 𝛿𝑙 = dist_cluster(𝐶𝑖, 𝐶𝑗) ▷ distances between 𝐶𝑖 and 𝐶𝑗 in the original and projected space
39: if Steadiness Case then
40: 𝜇𝐶𝑖,𝐶𝑗 ← −(𝛿ℎ − 𝛿𝑙) if − (𝛿ℎ − 𝛿𝑙) > 0 else 0

41: 𝑚𝑖𝑗 ←
𝜇𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝐶𝑖,𝐶𝑗

−min𝐷−

max𝐷−−min𝐷−

42: else ▷ Cohesiveness Case
43: 𝜇𝐶𝑖,𝐶𝑗 ← 𝛿ℎ − 𝛿𝑙 if 𝛿ℎ − 𝛿𝑙 > 0 else 0

44: 𝑚𝑖𝑗 ←
𝜇𝐶𝑖,𝐶𝑗−min𝐷+

max𝐷+−min𝐷+

45: 𝑤𝑖𝑗 ← |𝐶𝑖| ⋅ |𝐶𝑗|
46: 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠.append((𝑚𝑖𝑗, 𝑤𝑖𝑗)) ▷ add new element
47: return 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠

Pointwise Distortion Measurement for the Reliability Map (Section 4.4)

Algorithm 2 Computing Pointwise Distortions
1: Input The set ℂwhich contains every pair of groups (𝐶𝑖, 𝐶𝑗) with distortion 𝑚𝑖𝑗 and weight 𝑤𝑖𝑗
2: Input The set of points 𝑃 = {𝑝1, 𝑝2,⋯ , 𝑝𝑛} in dataset where |𝑃| = 𝑛
3: Output The set of pointwise distortion 𝐷𝐼𝑆𝑇 = {𝑑𝑖𝑠𝑡1, 𝑑𝑖𝑠𝑡𝑗,⋯ , 𝑑𝑖𝑠𝑡𝑛}where 𝑑𝑖𝑠𝑡𝑖 is the pointwise distortion of 𝑝𝑖
4:
5: for (𝐶𝑖, 𝐶𝑗) in ℂ do ▷ registering points and corresponding distortion strengths
6: for point 𝑝𝑖,𝑘𝑖 in 𝐶𝑖 do
7: for point 𝑝𝑗,𝑘𝑗 in 𝐶𝑗 do
8: 𝑑 ← 𝑚𝑖𝑗 ⋅ 𝑤𝑖𝑗 ▷ distortion strengths
9: Register (𝑝𝑗,𝑘𝑗, 𝑑) to 𝑝𝑖,𝑘𝑖
10: Register (𝑝𝑖,𝑘𝑖, 𝑑) to 𝑝𝑗,𝑘𝑗
11: for data point 𝑝𝑖 in 𝑃 do
12: 𝑑𝑢𝑝 ← the points that have been registered multiple times to 𝑝𝑖
13: for 𝑞 in 𝑑𝑢𝑝 do
14: Remove the duplicated registration of 𝑞 by averaging distortion strengths

𝑑𝑖𝑠𝑡𝑖 ← 0
15: for each registered point and distortion strengths (𝑞, 𝑑) of 𝑝𝑖 do
16: 𝑑𝑖𝑠𝑡𝑖 ← 𝑑𝑖𝑠𝑡𝑖 + 𝑑
17: return {𝑑𝑖𝑠𝑡1, 𝑑𝑖𝑠𝑡2,⋯ , 𝑑𝑖𝑠𝑡𝑛}

Appendix B: Additional Reliability Maps for MNIST

Among the 𝑡-SNE, UMAP, PCA, Isomap, and LLE projections that we used for the MNIST exploration with ML
engineers (Section 7.1), we depicted the projections and the reliability map of UMAP, LLE, and Isomap in Figure 5.
Here, we present the remaining projections in which generated by PCA and 𝑡-SNE.

t-SNE

PCA

(St, Co) = (.814, .774)

(St, Co) = (.505, .637)

Figure 1: The PCA and 𝑡-SNE projections of MNIST test dataset and the reliability maps that visu-
alize each projection’s inter-cluster distortion values. Steadiness (St) and Cohesiveness (Co) scores
are depicted under the name of each technique. For each MDP technique, the left pane shows the
class information, and the right pane shows the reliability map.

As aforementioned in Section 7, we found the region mainly consists of categories #4 and #7 and is highlighted
as the area with high False Groups distortion (red dotted circle). The same phenomena also occurred in the Isomap
projection, which explains both PCA and Isomap’s low Steadiness score. Moreover, the reliability map showed that
𝑡-SNE suffered fromMissing Groups distortion as UMAP did, which aligns to the ground truth that digits in MNIST
stay much closer than they look in the projections generated by 𝑡-SNE or UMAP.

Appendix C: Scalability Report

We tested the metrics’ scalability on a Linux server with a 40-core Intel Xeon Silver 4210R CPU and a TITAN RTX
GPU. The execution time is as follows.

Figure 2: The execution time of computing Steadiness and Cohesiveness of the 𝑡-SNE projection
representingMNISTdataset,where each line corresponds to the number of iterations. The execution
time increases in proportion to the iteration number and number of points.

As our current implementation executes each iteration of partial distortion computation sequentially, the running
time increases in proportion to the iteration number. Our future goal is to parallelize this bottleneck by utilizing
multiprocessing (Section 8).

