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Abstract—Due to the intrinsic complexity of high-dimensional (HD) data, dimensionality reduction (DR) techniques cannot preserve all
the structural characteristics of the original data. Therefore, DR techniques focus on preserving either local neighborhood structures
(local techniques) or global structures such as pairwise distances between points (global techniques). However, both approaches can
mislead analysts to erroneous conclusions about the overall arrangement of manifolds in HD data. For example, local techniques may
exaggerate the compactness of individual manifolds, while global techniques may fail to separate clusters that are well-separated in the
original space. In this research, we provide a deeper insight into Uniform Manifold Approximation with Two-phase Optimization
(UMATO), a DR technique that addresses this problem by effectively capturing local and global structures. UMATO achieves this by
dividing the optimization process of UMAP into two phases. In the first phase, it constructs a skeletal layout using representative points,
and in the second phase, it projects the remaining points while preserving the regional characteristics. Quantitative experiments
validate that UMATO outperforms widely used DR techniques, including UMAP, in terms of global structure preservation, with a slight
loss in local structure. We also confirm that UMATO outperforms baseline techniques in terms of scalability and stability against
initialization and subsampling, making it more effective for reliable HD data analysis. Finally, we present a case study and a qualitative
demonstration that highlight UMATO’s effectiveness in generating faithful projections, enhancing the overall reliability of visual analytics
using DR.
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1 INTRODUCTION

D IMENSIONALITY reduction (DR) is a commonly used set of
techniques to visualize high-dimensional (HD) data [1], [2],

[3] in various domains (e.g., bioinformatics [4], natural language
processing [5]). DR techniques synthesize a low-dimensional
representation (i.e., projection) that summarizes the structural
characteristics of the original HD data, which can be visualized
using scatterplots. As DR “compresses” data from a vast HD
space to a narrow low-dimensional space, it cannot preserve all the
structural characteristics of the original data. Therefore, each DR
technique prioritizes preserving different structural characteristics.

In the literature, DR techniques can be broadly categorized
into two groups—local techniques and global techniques—based
on the structural characteristics they prioritize [6], [7], [8]. Local
techniques (e.g., UMAP [9], t-SNE [10]) aim to preserve the local
structures of HD data, such as neighborhood structures. In con-
trast, global techniques (e.g., PCA [11], Isomap [12], MDS [13],
and L-MDS [14]) focus on preserving large-scale relationships
such as pairwise distances between distant points and the relative
arrangement of manifolds, i.e., global structure.
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However, both local and global techniques fall short in gen-
erating projections that faithfully represent the arrangement of
manifolds in the original HD data [7], [15], [16]. Local techniques
“exaggerate” close neighbors while downplaying other relation-
ships, resulting in projections that depict mutually more separated
but individually more condensed manifolds (e.g., UMAP, Trimap,
and PacMAP projections of Spheres data in Figure 9). For ex-
ample, UMAP assumes that points that are not neighbors have
no similarity [9]. This makes the resulting projections useful for
identifying individual clusters and counting them, but not suitable
for analyzing the distances between them. In contrast, global
techniques often cause well-separated manifolds to overlap (e.g.,
PCA projection of S-Curve data in Figure 9), potentially leading
analysts to erroneous conclusions about the underlying structure.
These errors can bias the perception of how the manifolds are ar-
ranged in the original dataset, resulting in an unreliable analysis of
the data. One way to alleviate this problem is to link multiple DR
projections, for example, through small multiples or interactive
methods [16], [17]. However, this approach increases cognitive
load on analysts. Moreover, static, non-interactive visualizations
remain a common method for sharing data analysis results, as
evidenced by their frequent use in many research papers across
various fields [18].

In this paper, we present UMATO, a DR technique designed
to preserve both the global and the local structures. The main mo-
tivation of UMATO is to support users in both reliably identifying
local manifolds (e.g., clusters or classes) while simultaneously
examining their relationship (Section 6). To achieve this, we align
UMATO with the typical visual analytics pipeline, which pro-
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gresses from overview to detail [19], by dividing the optimization
into two sequential phases. In the first phase, optimization is
performed on a small subset of representative points, i.e., hub
points. Since optimizing the distances between a small number
of points requires relatively less computation, the optimization
considers the entire set of pairwise distances between points
without any approximation. Consequently, we obtain a skeletal
layout that accurately preserves the global structure of the original
data. In the second phase, we gradually add the remaining points
to the projection. The resulting projection can accurately preserve
the global structure because the aforementioned hub points are
already embedded in place as anchors. In this phase, we employ
the loss function and optimization procedure of UMAP to leverage
its strength in accurately preserving local structures.

Our quantitative experiments show that UMATO achieves
state-of-the-art performance in preserving the global structure
while maintaining competitive performance in preserving local
structures compared to other local DR techniques, which means
that UMATO aligns well with our initial design goal. Moreover,
the scalability analysis shows that UMATO is faster than its
competitors. Here, UMATO not only outperforms the original
UMAP but also surpasses its faster variant algorithms, such as
PacMAP [20] and Trimap [21]. Additionally, we validate that
UMATO is stable against noise in the data (e.g., subsampling)
and substantially outperforms baseline techniques in this respect.
Lastly, a qualitative demonstration using four synthetic datasets
and a case study reaffirm the capability of UMATO to faith-
fully represent the original HD data, leading to a more reliable
data analysis. Together, these results confirm the effectiveness of
UMATO for reliable HD data analysis.

Improvements since the previous short paper. Several enhance-
ments have been made to the paper since we first introduce the
core algorithm in our IEEE VIS 2022 short paper [22]. First, we
enhance the algorithm for arranging outlier points to improve its
accuracy (Appendix A). Second, we conduct extensive evalua-
tions of UMATO. While the previous short paper evaluates the
accuracy of UMATO using three real-world datasets and a single
synthetic dataset, we improve the generalizability of the accuracy
evaluation by leveraging 20 real-world datasets. We also present
a case study demonstrating UMATO’s effectiveness in supporting
reliable visual analytics in real-world settings. Moreover, we verify
the effectiveness of UMATO in terms of stability and scalability.

We also improve the implementation of UMATO to facilitate
its practical usage. First, we improve the scalability of the algo-
rithm. In our previous short paper, we report that UMATO is about
three times slower than UMAP [23]. However, by optimizing the
code to remove redundant calculations and parallelizing the algo-
rithms, UMATO is now on par with UMAP. This also positions
UMATO ahead of other state-of-the-art nonlinear DR techniques
(Section 4.2). Finally, we make UMATO more accessible by
offering it as an open-source Python library1. As of August 2025,
UMATO has been downloaded over 13,000 times.

2 BACKGROUND AND RELATED WORK

We discuss relevant literature in relation to our work. We first ex-
plain the UMAP algorithm in detail. We then discuss two relevant
areas: variants of UMAP and DR techniques for preserving global
structure.

1. github.com/hyungkwonko/umato

2.1 UMAP
UMATO adopts the loss function and optimization procedure of
UMAP. We thus explain UMAP’s computation procedure (kNN
graph construction and layout optimization) in detail. For the
mathematical details, please refer to its original paper [9].

kNN Graph Construction. After UMAP gets an HD data X =
{x1, . . . ,xN} as input, it constructs a weighted kNN graph. Given
k (the number of NN to consider) and a distance function d :
X ×X → [0,∞), the kNN of xi regarding d, which we denote as
Ni, is computed. Then, UMAP computes ρi, a distance from xi to
its nearest neighbor:

ρi = min
j∈Ni
{d(xi,x j) | d(xi,x j)> 0}. (1)

Subsequently, a parameter σi satisfying:

∑
j∈Ni

exp(−max(0,d(xi,x j)−ρi)/σi) = log2(k). (2)

is found using a binary search. Next, UMAP computes the weight
of the edge from xi to x j, defined as:

v j|i = exp(−max(0,d(xi,x j)−ρi)/σi). (3)

A final weight of an edge connecting xi and x j is then defined as
vi j = v j|i + vi| j− v j|i · vi| j.

Layout Optimization. In this step, the algorithm aims to find
a projection Y = {y1,y2, · · · ,yN} that minimizes the loss between
HD edge weights and low-dimensional similarities. Here, UMAP
defines the similarity between two points yi and y j in the projection
as

wi j = (1+a||yi− y j||2b
2 )−1, (4)

where a and b are user-steerable hyperparameters. Setting a and b
to 1 is the same as using Student’s t-distribution.

Cross-entropy between the edge weights (vi j) and low-
dimensional similarity (wi j) is used for the loss function:

CE = ∑
i ̸= j

[vi j · log(vi j/wi j)− (1− vi j) · log((1− vi j)/(1−wi j))].

(5)
UMAP uses spectral embedding [24] to initialize yi. Then, yi
positions are iteratively optimized to minimize CE. Given the
output weight wi j as 1/(1+ ad2b

i j ), where d2b
i j = ||yi = y j||2b

2 , the
attractive gradient is:

CE
yi

+

=
−2abd2(b−1)

i j

1+ad2b
i j

vi j(yi− y j), (6)

and the repulsive gradient is:

CE
yi

−
=

2b
(ε +d2

i j)(1+ad2b
i j )

(1− vi j)(yi− y j). (7)

Note that ε is a small hyperparameter added to prevent division
by zero, and di j is the Euclidean distance between yi and y j.

During optimization, the negative sampling technique is lever-
aged [25], [26], [27] for acceleration. The sampling is done by
first choosing a target edge (i, j) and M negative sample points
for each epoch. Then, i and j contribute to attractive forces, and
points in M contribute to repulsive forces, where the positions of
i, j, and M are updated. The objective function regarding negative
sampling is like this:

C̃E = ∑
(i, j)∈E

vi j(log(wi j)+
M

∑
k=1

E jk∼Pn( j)γ log(1−wi jk)). (8)

https://github.com/hyungkwonko/umato
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Here, γ is a hyperparameter that defines the weight of negative
samples. E jk∼Pn( j) denotes that jk is sampled from a noisy distri-
bution Pn( j)∝ deg3/4

j [25], where deg j denotes the degree of point
j.

Our contributions. According to the original paper that in-
troduces UMAP, the cross-entropy loss function that leverages
both attractive and repulsive gradients makes UMAP accurately
capture both local and global structures [9] (Equation 5, 6, and
7). However, due to the edge weight function that focuses on
kNNs (Equation 3) and the limited number of samples through
negative sampling, UMAP often falls short in preserving the global
structure in practice [15], [28], [7].

UMATO’s two-phase optimization scheme allows it to effec-
tively exploit the capability of UMAP to capture local and global
structures. In the first stage, UMATO optimizes a smaller number
of points (i.e., hub points) without negative sampling approxi-
mation. Therefore, the technique fully leverages the capability
of UMAP’s optimization strategy to capture the global structure.
Then, in the second stage, UMATO optimizes the remaining
points as UMAP does to leverage its capability to preserve local
structures. Our quantitative experiments (Section 4), qualitative
demonstrations (Section 5), and a case study (Section 6) confirm
UMATO’s ability to represent the original structure of high-
dimensional data accurately.

2.2 Reliable High-dimensional Data Analysis with Di-
mensionality Reduction

Visual analytics should be reliable, i.e., decision-making or knowl-
edge generation based on visualization should accurately reflect
the original data characteristics. However, HD data analysis with
DR can easily become unreliable as distortions occur when pro-
jecting data from a vast HD space to a narrow low-dimensional
space [16], [29], [30].

A common approach to mitigate unreliability is to measure
the accuracy of DR projections and use those with good scores.
Diverse quality metrics have been proposed for this purpose [6].
While local metrics (e.g., Trustworthiness & Continuity [31],
MRREs [32]) aim to measure how well DR projections preserve
the local structure, global metrics (e.g., KL Divergence [33], Stress
[13]) evaluate the preservation of the global structure. For exam-
ple, DR benchmark studies [34], [35] use these metrics to identify
the best matching projection for a given data or visual analytics
task. These metrics can also be used to optimize hyperparameters
to achieve the best projection possible with a given DR technique
[36], [35].

We can also enhance the reliability of DR-based visual an-
alytics by using multiple projections simultaneously [16], [15],
[17]. By juxtaposing multiple projections that focus on different
structural characteristics, analysts can gain a more comprehensive
and reliable understanding of the original HD data. However,
using multiple projections requires more screen space, and linking
different projections is mentally demanding [2], [37]. Conse-
quently, an alternative strategy to augment a DR projection has
emerged. For example, some studies have proposed to visualize
distortions in different parts of the projection using techniques
such as heatmaps [38] or Voronoi diagrams [29], [39].

Our contribution. Despite all these efforts in the visualization
community, it is still common to use a static DR projection
to analyze data and share results. For example, many research
papers [40], [41], [42] and visual analytics systems [43], [44],

[45] present and describe their data using a single DR projection.
In such situations, our research contributes to achieving a more
reliable data analysis by introducing a DR technique that produces
projections that accurately reflect the manifold structure in the HD
data.

2.3 Dimensionality Reduction Techniques for Preserv-
ing both Local and Global Structures
It is important to note that our research is not the sole work fo-
cusing on DR projections that preserve local and global structures.
One typical strategy is to design a loss function incorporating both
local and global aspects of HD data. Topological autoencoder
(TopoAE) [36], for example, achieves the goal by adding a
topological loss that considers global structure to the original
reconstruction loss of autoencoders that makes the algorithm better
preserve local structure [46]. Another approach is to modify the
distance function. PacMAP [20], a variant of UMAP, introduces a
flexible distance function that adapts based on the density of the
data. TriMAP [21], another variant of UMAP, defines weights (i.e.,
similarity) between data points in triplets rather than pairs. How-
ever, these techniques optimize all points simultaneously, which
means both global and local structures are optimized together. This
approach can potentially compromise the preservation of either the
local or global structures.

As an alternative, approaches using skeletal points have
emerged. These points are often referred to as hubs, landmarks, or
anchors. For example, De Silva and Tenebaum proposed L-Isomap
[8], which extends the Isomap by leveraging landmarks. Joia et al.
[47] introduced LAMP, which allows users to steer projections by
moving landmarks.

Our contributions. However, these techniques randomly
choose landmarks without considering their structural importance,
resulting in an inaccurate representation of the global structure.
Also, these techniques are designed by modifying DR techniques
that perform suboptimally in preserving local structures, making
accurate local structure preservation challenging. In summary,
these techniques hardly reach the full potential of targetting both
local and global structure preservation. In contrast, UMATO uti-
lizes hubs (equivalent to landmarks) that are systematically chosen
to better capture the global structure, achieving state-of-the-art
performance in preserving the global structure of HD data (Sec-
tion 4.1). Also, by leveraging UMAP’s optimization procedure, a
state-of-the-art algorithm for capturing local structure, UMATO
accurately captures not only the global structure but also the local
structure of HD data.

3 UMATO
We introduce UMATO, a DR algorithm for more reliable anal-
ysis of HD data manifolds. Aligned with Shneiderman’s visual
information-seeking mantra [19], Overview first, zoom and filter,
and details on demand, UMATO first projects skeletal points
to preserve the global structure, then projects the remaining
points while focusing on local structure preservation. By doing
so, UMATO helps users to reliably identify local manifolds and
examine their relationship. Please refer to Figure 1, Algorithm 1,
and Algorithm 2 for detailed illustrations of the algorithm.

3.1 kNN Graph Consturction
UMATO shares the initial step with UMAP. We first construct
kNN indices. Then, by calculating ρi (Equation 1) and σi (Equa-
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Fig. 1. The comparison between the pipelines of UMAP and UMATO. Based on a given HD data, UMATO first constructs a kNN graph and classifies
points into three groups (hubs, extended nearest neighbors or eNNs, and disconnected points or DCPs) using the kNN indices (a). In the layout
optimization stage, hubs, eNNs, and DCPs are embedded separately in order (b-d). Note that UMATO also starts by initializing hubs, but we omit
this in the figure. The separation of optimization enhances UMAP’s stability and accuracy in preserving global structure. In contrast, UMAP does
not classify points and optimizes every point together, compromising its stability and precision in maintaining the global structure (e-h).

Algorithm 1 UMATO
1: procedure UMATO(X , k, d, nh, eg, el)

Input: High-dimensional data X , number of nearest neighbors k,
projection dimension d, number of hub points nh, epochs for
global and local optimization eg, el

Output: Low-dimensional projection Y
2: Compute k-nearest neighbors of X
3: Obtain a sorted list using the indices’ frequency of k-nearest

neighbors
4: Build k-nearest neighbor graph structure
5: Classify points into hubs, expanded nearest neighbors, and

disconnected points (Algorithm 2)
6: Optimize CE( f (Xh)||g(Yh)) to preserve global configuration

(Equation 5)
7: Initialize expanded nearest neighbors using hub locations
8: Update k-nearest neighbors & compute weights (Equation 3)
9: Optimize C̃E( f (X)||g(Y )) to preserve local configuration

(Equation 8)
10: Arrange disconnected points
11: return Y
12: end procedure

tion 2) for each point i, we obtain the pairwise similarity for every
pair of points in kNN indices.

3.2 Point Classification

The objective of UMATO is to enable users to reliably identify
local manifolds and investigate their relationship. To this end,
UMATO classifies the points into three disjoint sets—hubs (Ph),
expanded nearest neighbors (eNNs or Pe), and disconnected points
(DCPs or Pd). The role of hubs is to establish the skeletal layout
that represents the global structure of the input data. Hubs are
distributed proportionally to density, anchoring the data in a
manner that accurately preserves the global relationships between
important local manifolds (e.g., dense clusters). The eNNs and

Algorithm 2 Point Classification
1: procedure POINT CLASSIFICATION(X , K, nh)

Input: High-dimensional data X , k-nearest neighbor indices K, num-
ber of hub points nh

Output: Point classes Ph, Pe, Pd
2: Ph = /0, Pe = /0, Pd = /0
3: Kp = {(xi, fi)|xi ∈ Flatten(K) with fi being the corresponding

frequency}
4: for i = 1 to nh do
5: Ph← Ph∪ xi where xi has the largest fi in Kp
6: Kp ← Kp−NN1(xi) where NN1 = {x j|(x j, f j) ∈ Kp and
∀x j ∈ NN}

7: end for
8: for i = 1 to nh do
9: Pe← Pe∪NN2(xi) where xi ∈ Ph and NN2(xi) is the NNs

of xi obtained from K
10: end for
11: Pd ← X− (Ph∪Pe)
12: return Ph, Pe, Pd
13: end procedure

DCPs are then projected with the objective of precisely depicting
the local structure within such manifolds.

The procedure of point classification is as follows: we first
calculate how many times each point appears as a kNN of other
points, i.e., the frequency of each point in the kNN indices. We
then make a sorted list of points in descending order based on their
frequency. Next, we iteratively run the following two steps until
all points are connected: 1) designate the point with the highest
frequency as a hub from the pool of points that have not been
selected yet; 2) remove kNN of the selected hub from the sorted
list. By using the sorted list, we make the hub picked in each
iteration to be both popular and sufficiently dispersed from other
hubs that have already been chosen. Hubs can thus be interpreted
as mutually dissimilar points with high local density [63]. Such
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TABLE 1
The list of HD datasets used in the quantitative experiments (Section 4) and their traits. For detailed explanations about the traits, please refer to

Espadoto et al. [35].

Dataset Type Size Size class Dim. Dim. Class Int. Dim. Int. Dim. Class Sparsity Sparsity Class

Blood Transfusion Service Center [48] Table 748 small 4 low 0.2500 medium 0.0017 dense
Asteroseismology [49] Table 1001 medium 3 low 0.3333 medium 0.0000 dense
CNAE-9 [50] Text 1080 medium 856 high 0.3960 medium 0.9922 sparse
Coil-20 [51] Image 1440 medium 400 medium 0.2675 medium 0.3691 medium
Epileptic Seizure Recognition [52] Table 5750 large 178 medium 0.0291 medium 0.0002 dense
Flickr Material Database [53] Image 997 small 1536 high 0.3066 medium 0.0010 dense
Hate Speech [54] Text 3221 large 100 medium 0.8600 high 0.9701 sparse
IMDB [55] Text 3250 large 700 high 0.8171 high 0.9417 sparse
Ionosphere [50] Table 351 small 34 low 0.7058 high 0.1191 dense
MNIST64 [7] Image 1082 medium 64 low 0.4218 medium 0.4935 medium
Optical Recognition [50] Image 3823 large 64 low 0.4531 medium 0.4880 medium
Paris Housing [56] Table 10000 large 17 low 0.0588 low 0.1520 dense
Predicting Pulsar Star [56] Table 9273 large 8 low 0.2500 medium 0.0000 dense
Raisin [57] Table 900 small 7 low 0.1429 medium 0.0000 dense
Rice Seed (Gonen Jasmine) [56] Table 18185 large 10 low 0.1000 low 0.0000 dense
Seismic Bumps [58] Table 646 small 24 low 0.2917 medium 0.5827 medium
Sentiment Labeled Sentences [59] Text 2748 medium 200 medium 0.8800 high 0.9887 sparse
SMS Spam Collection [60] Text 835 small 500 high 0.6700 high 0.9914 sparse
Weather [61] Table 365 small 192 medium 0.06250 low 0.0033 dense
Website Phishing [62] Table 1353 medium 9 low 0.8888 high 0.3199 medium

(1) Type: The category to which a dataset belongs (Table, Text, or Image)
(2) Size: Number of data points (i.e., samples) in a dataset (small: N ≤ 1000, medium: 1000 < N ≤ 3000, large: N > 3000)
(3) Dim. (Dimensionality): Number of dimensions of a dataset (small: D < 100, medium: 100≤ D < 500, high: D≥ 500)
(4) Int. Dim. (Intrinsic Dim.): The percentage of principal components needed to explain 95% of the data variance

(low: DI ≤ 0.1, medium: 0.1 < DI ≤ 0.5, high: 0.5 < DI ≤ 1)
(5) Sparsity: The ratio of non-zero values in a dataset (dense: S≤ 0.2, medium: 0.2 < S≤ 0.8, sparse: 0.8 < S≤ 1)

points are widely recognized as carrying crucial information for
approximating the original structure of data [64], [65], thereby
justifying our design choice. Once these hubs and their kNN are
set, we recursively identify kNN of the current kNN until no
additional points can be appended. These recursively identified
neighbors, except for the hubs, are referred to as eNN. Any set of
points not belonging to either hubs or eNNs is classified as DCPs.
Such points occur because their NNs are located far away, thus
having another set of points as their NNs.

3.3 Layout Optimization
We take different strategies to optimize different sets of points.
This is to improve the preservation of both the global and local
structures of the data. After capturing the global structure using
only the hubs, we capture the local structure by embedding the
eNNs. We refrain from optimizing DCPs, as it has been observed
to potentially corrupt the overall arrangement of manifolds.

Global Optimization. To build the skeletal layout of the pro-
jection, we run the global optimization for the hubs. We start by
using PCA to set the initial positions of hub points. We use PCA
because it has been verified to support the final projection in better
capturing global structure [66]. Moreover, PCA is substantially
faster than UMAP’s initialization method (Spectral embedding),
thus enhancing the overall scalability of UMATO (Section 4.2).

Then, we optimize their positions by minimizing the
cross-entropy function (Equation 5) Specifically, let f (X) =
{ f (xi,x j)|xi,x j ∈ X} and g(Y ) = {g(yi,y j)|yi,y j ∈Y} be two adja-
cency matrices in high- and low-dimensional spaces, respectively.

Then, CE( f (Xh)||g(Yh)) is minimized, where Xh represents a
set of points selected as hubs in HD space and Yh is a set of
corresponding points in the projection. The global optimization
process does not include negative sampling approximation, which
makes the projection more robust and less biased in capturing
global structure. Moreover, it requires relatively less time since it
runs only for the selected hub points.

Local Optimization. Next, UMATO embeds eNNs, mainly
aiming to capture local structure. We set the initial position of
each data point x ∈ X in the 2D projection as an average position
of m (e.g., 10) NN with a small random perturbation. UMAP’s
optimization starts by building a kNN graph (see Section 2.1); we
conduct the same task but only with xi ∈ Ph ∪Pe. To this end, we
update kNN indices constructed in advance (Section 3.2) to rule
out the DCPs. In detail, regarding any point xi in the set Ph ∪Pe
and its neighbors xi j ∈ Nxi (where 1≤ j ≤ k), if xi j belongs to the
set Pd , we exclude it from Nxi and update it as the next neighbor
xik+1 , ensuring that xik+1 /∈ Pd . Since we use the kNN indices we
have already built, the computation is not expensive.

Afterward, local optimizations of hubs and eNNs (i.e., xi ∈
Ph ∪ Pe) are performed based on the cross-entropy loss func-
tion, similar to UMAP. We also leverage the negative sampling
technique (Equation 8). However, UMATO prioritizes preserving
the positions of hubs due to their established role in the global
structure, favoring this approach over uniform updates of all
points’ positions. We achieve this by selecting i among eNNs and
choosing j from both hubs and eNNs to sample a target edge (i, j).
If j is a hub, we penalize the attractive force for j by assigning
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a small weight (e.g., 0.1), which makes j not excessively affected
by i if it is a hub point. Furthermore, the repulsive force can
disperse local attachments, causing points to deviate in each epoch
and ultimately disrupting the well-structured global layout. To
mitigate this, we consider a penalty (e.g., 0.1) when calculating the
repulsive gradient (Equation 7) for the points selected as negative
samples.

Disconnected Points Arrangement. Unlike hubs or eNNs, DCPs
are almost equidistant from all the other data points in HD space
because of the curse of dimensionality [67], [32]. Incorporating
them into the optimization can make them mingle with the already
positioned points (i.e., hubs, eNNs), potentially disrupting both
global and local structures. We thus project DCPs near their NNs;
for a DCP xi ∈ Pd , we embed xi on the centroid of kNNs of xi.
This approach allows us to benefit from the overall composition
of the already optimized projection.

3.4 Computational Complexity
We analyze the time complexity of optimizing UMATO as follows.

kNN graph construction (Section 3.1). As with UMAP, con-
structing kNN indices relies on the Nearest-Neighbor-Descent
algorithm [68], which costs O(N1.14), where N stands for the size
of the dataset.

Point Classification (Section 3.2). We sort the points and visit
each point once while classifying points. Therefore, the time
complexity is O(N logN).

Layout Optimization (Section 3.3). Regarding global optimiza-
tion, PCA initialization on hub points requires O(d|Ph|). Each
epoch of optimization costs O(|Ph|2) as the stage runs without
negative sampling approximation. Meanwhile, each epoch of the
local optimization costs, which incorporates negative sampling, is
O(k∗(|Ph|+ |Pe|)) as the attractive forces need to be calculated for
all neighbor edges. [9]. As each DCP can be embedded in constant
time, the time complexity of the DCP arrangement step is O(|Pd |).

Combining these, the overall time complexity of UMATO
optimization is O(N1.14 +NlogN +d|Ph|+ |Ph|2 + k(|Ph|+ |Pe|)+
k|Pd |), which can be further simplified to O(N1.14 + |Ph|2 + kN).
The complexity is slightly higher than UMAP (which is O(N1.14+
kN) [9]), making UMATO marginally slower than UMAP when
using PCA initialization (Section 4.2).

4 QUANTITATIVE EXPERIMENTS

We conduct a series of experiments to evaluate UMATO and
compare it against competitors. First, in Section 4.1, we evaluate
the accuracy of UMATO in depicting local and global structures
of HD data. We then assess its scalability in Section 4.2. Finally,
in Section 4.3, we examine the stability of UMATO against the
subsampling and initialization methods. The experimental settings
shared across all experiments are as follows.

Competitors. Our key considerations in selecting competitors
are as follows: (1) Competitors should be implemented in Python;
we set this requirement to ensure that competitors are easily
usable by data analysts in practice. (2) Competitors should include
global techniques, local techniques, and the ones that focus on
both structures (referred to as hybrid techniques for simplicity;
Section 2.3). Based on these considerations, we select three local
DR techniques (UMAP, t-SNE, LLE [70]), four global techniques
(PCA, Isomap [12], MDS [13], and L-MDS [14]), and three hybrid

a. Ranking based on 
Local Metrics

b. Ranking based on 
Global Metrics

LAMP
L-MDS

PCA
MDS
LLE

Trimap
UMATO (Random)

UMATO
Isomap

PacMAP
UMAP

UMAP (PCA)
t-SNE

1 2 3 4 5 6 7 8 9 10 11 12 13
Average Ranking

UMAP
UMAP (PCA)

L-MDS
LLE

Trimap
t-SNE

PacMAP
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LAMP
PCA

UMATO (Random)
UMATO
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1 2 3 4 5 6 7 8 9 10 11 12 13
Average Ranking

Fig. 2. DR techniques ranked by local (a) and global (b) quality metrics
in accuracy analysis (Section 4.1, Table 2). Among the ten techniques
we compared, UMATO demonstrated the highest accuracy in terms of
global metrics and showed intermediate performance for local metrics.
The error bars depict 95% confidence intervals. Please refer to Table 2
for the detailed statistics.

techniques (LAMP [47], PacMAP [20], and Trimap [21]). For
UMAP, PacMAP, Trimap, and LAMP, we use the implementation
provided by the authors, which also leverages multithreading-
based parallelization and thus can be fairly compared with our
implementation. For t-SNE, we use the Multicore-TSNE library,
and for PCA and Isomap, we use the scikit-learn [71] implemen-
tation. These two libraries also accelerate the techniques using
multithreading. For L-MDS, we use the implementation provided
by Motta [72].

To investigate the impact of initialization on performance, we
add UMATO with random initialization instead of PCA (denoted
as UMATO (random)) as a competitor. We also include UMAP
with PCA initialization (i.e., UMAP (PCA)) as a baseline to isolate
and examine the effectiveness of UMATO’s core algorithm beyond
initialization (Section 3).

Datasets. We collect 20 HD datasets. To ensure the diversity of
datasets, we gather datasets with various traits (data type, size,
dimensionality, intrinsic dimensionality, and sparsity), following
the trait taxonomy proposed by Espadoto et al. [35]. As a result,
we construct a set of datasets that fully covers the taxonomy.
Please refer to Table 1 for the list of datasets and their trait values.

4.1 Accuracy Analysis
We conduct two experiments that evaluate the accuracy of
UMATO in preserving the structure of the original HD data.
First, to assess the practical applicability of UMATO, we compare
UMATO with aforementioned competitors that are likely to be
used in practice (Section 4.1.1). Next, we compare UMATO
against diverse variants of UMAP (e.g., the one that works without
negative sampling) to provide an in-depth investigation into the
effectiveness of our UMATO design (Section 4.1.2).

4.1.1 Comparison Against Practical Competitors

Objectives and design. We aim to evaluate the accuracy of
UMATO, i.e., how accurately UMATO can preserve the global
and local structures of the original HD data. We generate the
projections using UMATO and competitors, then assess accuracy
using widely used local and global DR quality metrics.

Quality metrics. We select the quality metrics from the list
of representative metrics provided by Jeon et al. [73]. For local
metrics, we use Trustworthiness & Continuity (T&C) [31] and
Mean Relative Rank Errors (MRREs) [32]. Both metrics examine
the extent to which k-nearest neighbor structure of the original and
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TABLE 2
The average scores that 13 DR techniques obtain in our first accuracy analysis (Section 4.1.1). For each quality metric, DR techniques ranked
between first and sixth place are highlighted in blue , where we assign higher opacity to the better techniques. Similarly, techniques ranked

between eighth and thirteenth place are highlighted in red , where worse techniques have higher opacity. UMATO substantially outperforms the
baselines in terms of global metrics with a slight sacrifice in local metric scores. Note that we standardize both the original data and projections to

minimize the impact of scaling [69].

Local Global

Trust.
k = 10

Trust.
k = 50

Conti.
k = 10

Conti.
k = 50

MRREF
k = 10

MRREF
k = 50

MRREM
k = 10

MRREM
k = 50 Stead. Cohev. KL Div.

σ = 1
KL Div.
σ = .1

DTM
σ = 1

DTM
σ = .1 Stress

UMAP 0.9067 0.8658 0.9420 0.8773 0.9113 0.8922 0.9524 0.9227 0.8538 0.6445 0.0042 0.2383 0.0662 0.4056 2.7369
UMAP (PCA) 0.9086 0.8675 0.9413 0.8885 0.9137 0.8943 0.9526 0.9267 0.8491 0.6510 0.0034 0.2005 0.0579 0.3852 2.7735
t-SNE 0.9218 0.8727 0.9442 0.9049 0.9327 0.9087 0.9561 0.9351 0.8605 0.6066 0.0030 0.1445 0.0581 0.3717 7.4736
LLE 0.8495 0.8300 0.9116 0.8790 0.8515 0.8398 0.9202 0.9012 0.7459 0.6226 0.0042 0.1905 0.0550 0.3775 0.9909
PacMAP 0.9194 0.8869 0.9227 0.8862 0.9225 0.9067 0.9293 0.9111 0.8557 0.5999 0.0026 0.1521 0.0517 0.3429 4.5020
Trimap 0.8954 0.8705 0.8891 0.8524 0.8987 0.8851 0.9025 0.8805 0.8510 0.6221 0.0030 0.1899 0.0546 0.3819 3.1781
LAMP 0.7482 0.7360 0.8759 0.8277 0.7535 0.7432 0.8940 0.8657 0.5104 0.5342 0.0021 0.1306 0.0418 0.3167 0.6359
L-MDS 0.8339 0.8254 0.8685 0.8393 0.8374 0.8290 0.8815 0.8616 0.7039 0.5989 0.0039 0.1986 0.0591 0.3759 0.9521
PCA 0.8406 0.8367 0.9006 0.8902 0.8431 0.8371 0.9074 0.8972 0.7288 0.6362 0.0020 0.1681 0.0369 0.3114 0.4362
Isomap 0.8560 0.8437 0.9282 0.8983 0.8595 0.8503 0.9360 0.9187 0.7812 0.6735 0.0021 0.1536 0.0376 0.2979 0.8468
MDS 0.8370 0.8414 0.8936 0.8976 0.8373 0.8350 0.8938 0.8914 0.7712 0.6772 0.0004 0.0823 0.0135 0.2070 0.2193
UMATO (Rand.) 0.8619 0.8399 0.9180 0.8811 0.8650 0.8522 0.9231 0.9041 0.7805 0.5847 0.0019 0.1418 0.0372 0.3118 0.8334
UMATO 0.8716 0.8527 0.9266 0.8989 0.8747 0.8627 0.9303 0.9150 0.7716 0.6178 0.0015 0.1290 0.0348 0.2915 0.8391
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Fig. 3. The subset of the projections generated in our accuracy analysis (Section 4.1). Colors depict the class label of each dataset. The analysis
results verified that UMATO outperforms competitors in terms of accurately preserving global structure while maintaining competitive performance
in depicting local structure. Note that we only depict the projections made by default configurations for UMATO and UMAP.

embedded spaces vary. They thus require k as a hyperparameter.
Smaller k forces the metrics to focus more on fine-grained local
structure. We use two k values, 10 and 50, for both metrics. Note
that as higher k values make local metrics more focused on global
structure, using two different values enhances the generalizabil-
ity of our evaluation. We also use Steadiness & Cohesiveness
(S&C) [16] as a measure for examining the preservation of
cluster structure. S&C works by iteratively extracting clusters in
one space and checking their dispersion in the other space. We
classify S&C as local metrics as it does not take into account the
global arrangement of clusters by design [16]. We use the default
hyperparameter setting provided in the original paper.

For global metrics, we use Kullback-Leibler (KL) Divergence
[33], Distance-to-Measure (DTM) [74], and Stress [13]. KL di-
vergence and DTM evaluate how accurately projections capture
global structure in terms of density estimation, while Stress as-
sesses this in terms of pairwise distances. Both KL divergence and
DTM require a hyperparameter σ , with higher values making the
metrics focus more on the global structure. Following a previous

convention [36], we use 0.1 and 1 as σ value.

Detailed procedure. Following Moor et al. [36], we first generate
optimal DR projections of datasets using Bayesian optimization
[75]. We apply optimization to all DR techniques (UMATO and
competitors), where the hyperparameter range we use is depicted
in Appendix B. We then evaluate the projections using quality
metrics. F1 score of T&C (k = 10) is used as an optimization
target, as T&C is widely interpreted as precision and recall of
DR [76], [77]. Note that we replicate the experiment using global
metrics (KL divergence) as target function in Appendix A, which
shows consistent results.

Results and Discussions. Table 2 depicts the detailed statistics
of the experiment, and Figure 2 shows the overall ranking of
techniques. Figure 3 shows the subset of projections generated
in this experiment.

Regarding local metrics (T&C, MRREs, S&C), t-SNE shows
the best performance, ranking first in eight out of ten metrics.
UMAP and PacMAP are the runner-ups. Meanwhile, UMATO
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TriMap
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LLE
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Fig. 4. The results of the scalability analysis with small datasets (Sec-
tion 4.2.1). Note that LAMP and MDS have been removed from the figure
as they need substantially longer computation time, making the runtime
of all other techniques look similar. UMATO takes about three seconds
on average to generate projections, outperforming all other nonlinear
DR techniques. The error bars depict confidence intervals (95%).

achieves intermediate accuracy, outperforming all global and hy-
brid techniques except PacMAP. Notably, UMATO even achieves
a substantially better average ranking on local measures than LLE,
a well-known local technique. In terms of global metrics, UMATO
is one of the best techniques. MDS, the technique that directly
optimizes the global distance, shows the best accuracy with
UMATO and UMATO (random) as close runner-ups. Other DR
techniques, including global techniques such as Isomap or PCA,
perform worse overall than these techniques. We also observe that
PCA initialization improves UMATO, while it provides negligible
benefit for UMAP. This finding demonstrates that preserving the
global structure of HD data cannot be achieved through PCA
initialization alone, yet the initialization still provides substantial
benefit when combined with an effective optimization process.

It is worth noting that UMAP shows the worst accuracy in
preserving global structure. This indicates that pairwise distances
between distant points cannot be trusted in UMAP [78], [15].
According to the Gestalt law on proximity, which suggests that
elements close to each other are perceived as related, this limita-
tion can substantially undermine the reliability of visual analytics
using UMAP.

In summary, UMATO is effective in preserving global struc-
ture while slightly sacrificing the capability to preserve the struc-
ture of local manifolds. This result aligns well with the design of
UMATO: hubs help UMATO capture global structure in the first
phase, but act as a constraint for local optimization of eNNs. These
results clearly verify that UMATO can help analysts conduct HD
data analysis in a more reliable manner. Meanwhile, the results
again highlight the fact that accurately preserving both local and
global structures can hardly be achieved.

4.1.2 Comparison Against UMAP Variants

Objectives and design. To identify which component of the
UMATO algorithm contributes most to its competitive accuracy
(Section 4.1.1), we focus on evaluating the impact of its two-
phase optimization process (Section 3). The results of the previous
experiment indicate the effectiveness of PCA initialization in
improving the accuracy of UMATO.

Here, we compare UMATO not only with the original UMAP
but also with a variant that disables negative sampling, denoted
UMAP (w/o ns). This variant of UMAP can also be interpreted as

a form of UMATO in which all points are considered hub points
and thus optimized without approximation. While this approach
is impractical due to inefficiency, it could, in theory, show the
optimal performance in preserving both global and local structure.
Comparing UMATO to this variant of UMAP thus reveals the
contribution of UMATO’s two-phase optimization design. For
consistency, we use the same procedure and metrics as in the
previous experiment (Section 4.1.1), with T&C as the optimization
target.

Results and discussions. The results are depicted in Table 3.
UMAP (w/o ns) underperforms compared to the original UMAP
in local structure preservation and to UMATO in global structure
preservation. Contrary to our expectation, disabling negative sam-
pling degrades the overall accuracy of UMAP. This degradation
occurs because considering all pairwise distances between points
during UMAP optimization introduces additional noise into the
optimization process. The results clearly demonstrate the effec-
tiveness of UMATO’s two-phase optimization strategy.

4.2 Scalability Analysis

We evaluate the scalability of UMATO. First, we compare all
techniques using relatively small datasets. Then, we compare
the top five scalable techniques with large datasets. Finally, we
investigate the runtime of individual stages of UMATO.

4.2.1 Scalability Analysis with Small Datasets
Objectives and design. Our objective is to check whether
UMATO can rapidly produce projections of small datasets. We
apply UMATO and competitors to the 20 HD datasets we used in
the accuracy analysis (Section 4.1) and compare the runtime. To
ensure robustness, we run each technique five times and record the
average runtime.

Additional Competitor. As UMATO’s default initialization
method (PCA) is substantially faster than the one used by UMAP
(Spectral embedding), it may be unfair to compare these two
algorithms directly with the default setting. We thus add UMAP
with PCA initialization as an additional competitor.

Hyperparameter. For UMAP, LLE, PacMAP, Trimap, and
UMATO, we set the number of nearest neighbors considered by
the techniques to 15, which is the default value of UMAP. For
UMATO, LAMP, and L-MDS, we set the number of hub points as
75, following the default of UMATO. For all other hyperparame-
ters, we use the default value provided by the implementations.

Apparatus. We conduct the experiment using a Linux server
equipped with Intel Xeon Silver 4210 and 224GB of RAM.

Results and discussions. Figure 4 depicts the results. While PCA
shows the best scalability, UMATO is the runner-up, which is
expected since UMATO incorporates PCA within its algorithm
(Section 3). UMATO achieves × 4 performance improvement
over UMAP regardless of the initialization method. UMATO
requires less than three seconds on average to generate projections.
Such results validate UMATO’s capability to promptly generate
projections for small datasets, which will enhance its applicability
in responsive and interactive systems.

4.2.2 Scalability Analysis with Large Datasets
Objectives and design. We aim to further verify UMATO’s
scalability by testing it on large datasets. We prepare three datasets
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TABLE 3
The average accuracy scores obtained by UMATO, UMAP and its variants (Section 4.1.2). DR techniques ranked between first and third place are
highlighted in blue , where we assign higher opacity to the techniques ranked ahead. Similarly, techniques ranked between fourth and sixth place
are highlighted in red , where techniques that are ranked behind have higher opacity. The results show that turning off negative sampling results
in worse accuracy of UMAP; such results support the effectiveness of our two-phase optimization design in preserving the global structure of the

HD data.

Local Global

Trust.
k = 10

Trust.
k = 50

Conti.
k = 10

Conti.
k = 50

MRREF
k = 10

MRREF
k = 50

MRREM
k = 10

MRREM
k = 50 Stead. Cohev. KL Div.

σ = 1
KL Div.
σ = .1

DTM
σ = 1

DTM
σ = .1 Stress

UMAP 0.9067 0.8658 0.9420 0.8773 0.9113 0.8922 0.9524 0.9227 0.8538 0.6445 0.0042 0.2383 0.0662 0.4056 2.7369
UMAP (PCA) 0.9086 0.8675 0.9413 0.8885 0.9137 0.8943 0.9526 0.9267 0.8491 0.6510 0.0034 0.2005 0.0579 0.3852 2.7735
UMAP (w/o ns) 0.8471 0.8313 0.9294 0.8967 0.8496 0.8397 0.9347 0.9174 0.7439 0.7469 0.0066 0.2120 0.0659 0.3808 0.9807
UMAP (w/o ns, PCA) 0.8643 0.8416 0.9292 0.8998 0.8724 0.8576 0.9394 0.9216 0.7706 0.6977 0.0045 0.2069 0.0572 0.3684 0.9879
UMATO (Rand.) 0.8619 0.8399 0.9180 0.8811 0.8650 0.8522 0.9231 0.9041 0.7805 0.5847 0.0019 0.1418 0.0372 0.3118 0.8334
UMATO 0.8716 0.8527 0.9266 0.8989 0.8747 0.8627 0.9303 0.9150 0.7716 0.6178 0.0015 0.1290 0.0348 0.2915 0.8391
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Fig. 5. The results of the scalability analysis with large datasets (Section 4.2). Overall, UMATO is on par with UMAP and outperforms every
competitor except PCA. The regression line is fitted to the y = a ·x logx+b function, following the time complexity of UMATO, UMAP, and its variants
(Section 3.4). LLE implementation is not depicted here as it requires more than 5,000 seconds to compute the smallest sampled subset of the data.

with more than 500K data points and check the time needed
for UMATO and competitors to process the datasets. To ensure
the experiment ends in a reasonable time, we use UMATO and
alternative DR techniques that ranked in the top five scalabilities
in the previous experiment with small datasets (UMAP with
PCA initialization, LLE, PCA, PacMAP, Trimap; refer to Sec-
tion 4.2.1). We test these competitors on the original datasets and
their subsampled versions to examine how runtime varies with
sample size. We adjust the sampling rate from 10% to 100% in
10% increments, with each technique executed once per sampled
dataset. We use the same hyperparameter and apparatus setting as
in the previous experiment (Section 4.2.1).

Datasets. We use Covertype [50], KDDCup99 [50], and RCV1
[79] datasets. For RCV1, we reduce the dimensionality from 47K
to 50 because the original dataset is represented in a compressed
sparse row format, which is incompatible with PacMAP and
UMATO implementations.

Results and Discussions. As shown in Figure 5, UMATO is the
runner-up after PCA. It performs comparably to UMAP with PCA
initialization and outperforms PaCMAP and Trimap in scalability.
The fact that UMATO outperforms Trimap and PaCMAP, two
scalable variants of UMAP that also use PCA for initialization,
strongly supports UMATO’s advantage in terms of scalability. This
trend remains consistent across varying dataset sizes.

4.2.3 Scalability Analysis for Individual Stages

Objectives and design. We investigate the runtime of individual
stages of UMATO, thereby identifying the bottleneck of the
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Fig. 6. Runtime of individual stages in UMATO. Overall, local optimiza-
tion and kNN graph construction dominate the runtime. In terms of RCV1
dataset, DCP arrangement also requires substantial time.

technique. We check the runtime required to compute each stage of
UMATO (Section 3): kNN graph construction, point classification,
initialization, global optimization, local optimization, and DCP
arrangement. We use the same hyperparameters, datasets, and
apparatus as in previous experiments (Section 4.2.1, 4.2.2).

Results and discussions. The results are depicted in Figure 6.
For all three datasets, we identify that kNN graph construction
and local optimization stages dominate the runtime of UMATO.
This result reaffirms our computational complexity analysis (Sec-
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tion 3.4), where these two stages theoretically dominate the
computation of UMATO. Further optimizing these stages will be
essential to enhance the usability of UMATO. We will discuss
possible directions in Section 8.2.

We also find that the ratio of DCP arrangement among total
runtime is notably higher in the RCV1 dataset than in the other
two datasets. The result indicates that UMATO may require larger
computation for outlier-rich datasets. Combining UMATO with
outlier detection and removal algorithms [80] to reduce runtime
will be an interesting future avenue to explore.

4.3 Stability Analysis
We evaluate the stability [81] of UMATO and baseline techniques
against two common data perturbations in DR: subsampling and
initialization. Here, we hypothesize that UMATO will exhibit high
stability, supporting more reliable data analysis. This is because
the global optimization step of UMATO, which determines the
overall shape of the resulting projection, runs without any approx-
imations (Section 3.3).

4.3.1 Stability Against Subsampling

Objectives and design. We aim to evaluate the stability of
UMATO against data subsampling. Subsampling is a common
strategy for obtaining DR results in a reasonable time by sampling
a portion of the original dataset and running DR on the sub-
sample. The primary concern is whether a subsampled projection
can accurately represent the patterns in the original dataset. For
subsampling to be reliably used in practice, the projection of a
subsampled dataset should be comparable to the subsample of the
projection made from the original dataset.

The stability against data subsampling is measured by evaluat-
ing the geometric similarity between the projection of a subsample
and the subsample of the projected points made with the entire
dataset. We use a Procrustes analysis for this purpose. First, we
align two projections by applying a permutation that best aligns
them. We apply permutation first since the two projections being
compared can consist of different points in the original space.
Then, translation, uniform scaling, and rotation are applied to
the two projections. Finally, we compute the Procrustes distance
between two projections. For two projections X = {x1,x2, ...,xn}
and Y = {y1,y2, ...,yn}, Procrustes distance is defined as:

dP(X ,Y ) =

√
n

∑
i=1

(xi− yi)2. (9)

A distance of 0 indicates a perfect match, while a distance of 1
indicates maximum dissimilarity.

To comprehensively evaluate the stability of DR techniques,
we conduct Procrustes analysis on diverse datasets and sampling
rates. For each pair of datasets and DR technique, we conduct the
analysis 50 times, where the sampling rate is randomly selected
between 10% and 99%.

Hyperparameter. We use the same hyperparameter setting as in
the scalability analysis (Section 4.2).

Datasets. Among the 20 collected datasets, we exclude those
with sizes smaller than 3,000, as they do not result in sufficient
subsample sizes. As a result, we use seven datasets in total. The
datasets used in this experiment are underlined in Table 1.

Results and discussions. Figure 7 presents the results. UMATO
shows the best stability against subsampling except for PCA

UMAP
LAMP

UMAP (PCA)
UMATO (Random)

TriMap
LLE

t-SNE
L-MDS

PacMAP
UMATO
Isomap

MDS
PCA

1e-04 1e-03 1e-02 1e-01
Disparity

Fig. 7. The stability of UMATO and baseline techniques against sub-
sampling (Section 4.3.1). The smaller the disparity is, the more stable
the corresponding DR technique is. Error bars depict 95% confidence
intervals.

UMAP
PacMAP

t-SNE
UMATO

0.01 0.03 0.10
Disparity

Fig. 8. The stability of UMATO and competitors against diverse initializa-
tion method (Section 4.3.2). The smaller the disparity is, the more stable
the corresponding DR technique is. Error bars depict 95% confidence
intervals. Among the four DR techniques we compare, UMATO showed
the best stability over the change of initialization method.

and Isomap. Moreover, UMATO is up to ten times more stable
than UMAP. PCA, Isomap, and MDS outperform UMATO as
they are techniques that rely on matrix multiplication in reducing
dimension. Since these transformation matrix depends on the data
features, they are inherently robust to data subsampling, much like
data variance. Nonetheless, the fact that UMATO outperforms all
other nonlinear techniques and even a linear technique (L-MDS)
validates the effectiveness of our two-phase optimization scheme
and the reliability of visual analytics using UMATO.

The results also imply the importance of PCA initialization in
improving stability. We find that UMATO is ten times less stable
with random initialization. However, UMAP shows negligible
improvement due to PCA initialization, which aligns with the
results of our accuracy analysis (Section 4.1.1). The results clearly
indicate the positive interplay between PCA initialization and the
two-phase optimization scheme of UMATO.

4.3.2 Stability Against Initialization Method

Objectives and design. We aim to evaluate the projection stability
of UMATO against initialization methods. It is widely known that
the characteristics of DR projections highly depend on initializa-
tion [66]. The more sensitive a DR technique is to initialization,
the less reproducible the data analysis based on that technique
becomes. Therefore, robustly producing stable projections regard-
less of the initialization methods is essential for a reliable DR
technique.

The evaluation process is as follows: For a given dataset
and a DR technique, we generate five projections with diverse
initialization methods. Three are randomly initialized, and the
remaining two are initialized using PCA and Spectral embedding.
We select PCA and Spectral embedding because they are the de-
fault initialization methods for UMATO and UMAP, respectively.
We then perform Procrustes analysis (see Section 4.3.1 for details)
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Fig. 9. The projections used in our qualitative experiment (Section 5). While UMATO succeeds in accurately depicting the original structure for all
four datasets, competition techniques fail to do so.

on the projections in a pairwise manner, using the resulting scores
as a proxy for the stability of the corresponding DR technique.

Competitors. We compare nonlinear DR techniques that have
an initialization process followed by an optimization step. We
also exclude the competitors whose implementations do not allow
changes to the initial projection. As a result, we compare UMATO
against UMAP, t-SNE, and PacMAP.

Hyperparameter and datasets. We use the same hyperparameter
setting and datasets as in the scalability analysis (Section 4.2).

Results and discussions. Figure 8 depicts the results. Among
four DR techniques that share the initialization and following
optimization process, UMATO shows the best stability. Compared
to UMAP, UMATO is up to 10 times more stable. As in the
stability analysis over subsampling (Section 4.3.1), these results
clearly verify that using UMATO will substantially enhance the
reliability of HD data analysis.

5 DEMONSTRATION

We qualitatively verify that by focusing both on global and local
structures, UMATO faithfully represents the manifold structure
of HD data. To do this, we prepare diverse synthetic datasets with
known structures. We then apply UMATO and baseline techniques
(UMAP, t-SNE, Trimap, PCA, PacMAP, LLE, L-MDS, LAMP)
and manually investigate whether the projections accurately depict
the original characteristics of the data. Following our accuracy
analysis (Section 4.1), we use Bayesian optimization [75] with
T&C loss function to generate optimal projections.

5.1 Datasets

We utilize four synthetic datasets. The brief description of each
dataset and the salient structural characteristics that any effective
DR techniques should preserve are as follows:

Swiss roll. This dataset consists of a plane rolled into the 3D
space. We generate the Swiss roll consisting of 5,000 points
using scikit-learn library. An effective DR technique may
accurately represent both the structure of the plane and its global
structure (i.e., rolled shape).

S-Curve. The dataset is similar to the Swiss roll, but the plane is
curved into an S-shape instead of a roll. Like the Swiss roll, we
made an S-curve with 5,000 points with scikit-learn library.
An effective DR technique should accurately represent both the
plane and its global curved shape.

Mammoth. The Mammoth dataset [78] is a 3D point cloud repre-
senting the skeleton of a mammoth. Among the different versions
provided by Coenen and Pearce [78], we use the one consisting of
10,000 points. We aim to check whether DR projections accurately
depict the real appearance of the mammoth.

Spheres. This dataset, first introduced by Moor et al. [36],
consists of 101-dimensional spheres. Ten small spheres, each with
a radius containing 500 points, are enclosed by a large sphere with
5,000 points. We expect an effective DR projection to accurately
reflect the inclusion relationship between the small and large
spheres. We do not depict the Spheres dataset as it lies in the
101-dimensional space.

5.2 Qualitative Analysis

The resulting projections are depicted in Figure 9. For Swiss
roll and S-curve datasets, UMATO, L-MDS, and MDS capture
the global structure(rolled and curved shapes) while unrolling
the local plane structure. UMAP, t-SNE, Trimap, PacMAP, LLE,
Isomap, and LAMP accurately depict the dataset as planes (cap-
turing the local structure) but fail to capture the global shapes. In
contrast, PCA successfully captures the global structure but often
represents local manifolds as lines instead of planes.

In terms of the Mammoth dataset, UMATO, PCA, PacMAP,
L-MDS, and MDS succeed in accurately representing the overall
characteristics of the Mammoth skeleton. t-SNE and LAMP totally
lose the structure. UMAP, Trimap, Isomap, and LLE preserve local
structures, but their global arrangement is distorted.

For the Spheres dataset, UMATO and MDS accurately rep-
resent the relationship between the outer and inner spheres. In
their projections, we can find that the outer circle encloses inner
spheres in a circular form, providing an intuitive depiction of the
original global structure. In contrast, other baseline techniques
failed to accurately depict the inclusion relationship. For example,
in the UMAP projection, a big enclosing hypersphere is divided
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Fig. 10. Heatmaps representing how well the relationships between each pair of classes are preserved by four DR techniques (UMATO, UMAP,
t-SNE, and PCA) (Section 6). Each cell depicts the KL divergence score locally computed for the corresponding pair of classes (the lower, the
brighter and better). The colors are normalized across each dataset (row). The red numbers depicted in the lower right corner of each heatmap
represent the sum of scores across the heatmap. Overall, UMATO performs best in preserving pairwise relationships between classes, indicating
its effectiveness in supporting reliable analysis of labeled data.
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Fig. 11. UMATO, UMAP, t-SNE, and PCA projections of Fashion-
MNIST dataset. Our case study (Section 6) demonstrates that UMATO
projections can help analysts analyze the global relationship between
class labels in a reliable manner.

and merged into small hyperspheres. This occurs because UMAP
focuses on local neighborhood structure and thus hardly captures
the existence of a big hypersphere. A similar phenomenon occurs
in PacMAP, t-SNE, Isomap, and Trimap. In contrast, in PCA and
L-MDS projections, the inner spheres are located outside the outer
sphere, which is a totally incorrect representation of the original
dataset.

In summary, UMATO faithfully represents the overall man-
ifold structure of all four datasets. This qualitatively reaffirms

the results of our accuracy analysis (Section 4.1), demonstrating
UMATO’s superiority in reliable visual analytics of HD data.

6 CASE STUDY

We present a case study with real-world datasets demonstrating
how UMATO contributes to the reliable analysis of HD data.

6.1 Objectives and Design
We showcase the effectiveness of UMATO in supporting reliable
analysis of labeled datasets. We simulate a situation in which an
analyst generates DR projections of a given labeled dataset and
visualizes them using scatterplots, where the color of each point
depicts the corresponding class label. We assume that the analyst
wants to investigate the relationship between class labels, e.g.,
overlap or separation between classes [82], [7], which is a common
task in labeled scatterplots [83], [15], [84]. We project datasets
using DR techniques, including UMATO, and then quantitatively
examine how well pairwise relationships between class labels are
preserved. The detailed setting we use is as follows:

DR projections. We compare four DR techniques: UMATO,
UMAP, t-SNE, and PCA. We select UMAP, t-SNE, and PCA as
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competitors as they are widely used DR techniques nowadays [7]
and also show the top or runner-up performance in preserving
local or global structures in our accuracy analysis (Section 4.1,
Figure 2). To guarantee fair comparison across DR techniques, we
optimize the hyperparameters of the techniques using Bayesian
optimization. Considering the assumption that the analyst wants to
investigate the relationship between class labels, we use a global
metric (KL divergence with σ = 0.1) as an optimization target.

Evaluating the preservation of the relationship between
classes. We want to evaluate whether the projections reliably
support the target task—which is to investigate the relationship
between classes. We achieve this by evaluating whether the
separability between classes is maintained. To do so, we apply
KL divergence for each pair of classes. Formally, for a given
HD dataset X = {x1,x2, · · · ,xn} and a corresponding projection
Y = {x1,x2, · · · ,xn}, we construct a matrix M where (i, j)-th cell
Mi, j is defined as:

Mi, j =

{
0 if i = j

KL(C(X ,{i, j}),C(Y,{i, j})) if i ̸= j
.

Here, C(Z,{i, j}) represents the subset of data Z having label i
or j and KL represents KL divergence. Note that lower values
in matrices indicate better performance of Y in preserving the
relationship between classes.

However, KL divergence only explains whether the separa-
bility between classes in the HD space are well represented in
the projection or not. For more comprehensive analysis, we use
S&C, quality measures specifically designed to examine overlap
and separation between clusters [16] (Section 4.1). To examine
how the representation of each class is distorted, we first compute
the degree to which each point is distorted using S&C, then
aggregate these scores in a class-wise manner. A low Steadiness
score means that the classes overlap with other classes or their
density is overrepresented. Conversely, low Cohesiveness means
that the separability between classes is exaggerated or their density
is underrepresented [16].

Datasets. We prepare three datasets: CNAE-9 [50], Flicker
Material Database [53], and Fashion-MNIST [85]. We use these
datasets because they have a sufficient number of class labels

(nine, nine, and ten for each), making them suitable for simulating
our assumed situation.

6.2 Result and Discussions

Figure 10 depicts the heatmaps representing Ms computed across
four DR techniques and three datasets. Overall, UMATO shows
the best performance (lighter color) in preserving the relationship
between pairs of class labels for all three datasets. The outcome
indicates that UMATO projections help analysts the most in
reliably examining class relationships.

The results verify the effectiveness of balancing global and
local structures in achieving reliable visual analytics using DR. As
seen in Figure 11, UMAP and t-SNE well separate class labels.
This is because these techniques focus on local structure, thus ex-
aggerating the distance between non-neighboring points [32], [15].
However, a close examination of KL divergence and S&C scores
suggests that this separation may be misleading. For example, in
UMAP’s projection of the Fashion-MNIST dataset (Figure 11),
the Bag class is placed distinctly from other classes. Still, the cor-
responding heatmap representing KL divergence scores shows that
the relationships between Bag and other classes are inaccurately
presented (solid orange boxes in Figure 10), indicating that such
a distinction can be misleading. This result also aligns with the
findings from previous literature [86], [78]. In the PCA projection,
we observe greater overlap between class labels (Figure 11);
however, the poor KL divergence score indicates that such overlap
is misleading. S&C scores reveal that this distortion primarily
originates from the Bag and Ankle boot classes (Figure 12, solid
blue box). Note that the same pattern—a substantial contribution
of specific classes to overall distortions—is also observed in
the CNAE-9 dataset (Figure 12 first row, first column). This
is because PCA cares less about local structures; thereby, non-
neighboring points are likely to be projected in similar locations
[16], [6]. Conversely, UMATO projection shows an intermediate
level of class overlap and achieves high average scores in both KL
divergence and S&C, showing the best performance in preserving
class-pairwise relationships overall. We can attribute this outcome
to UMATO’s preservation of global arrangements between classes
while avoiding false neighbors by considering local structures.
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Fig. 13. Illustration of how three major hyperparameters (min_dist, n_neighbors, hub_num) in UMATO affect the projections of the Mam-
moth dataset. The projections are made by tweaking a single hyperparameter value from the default hyperparameter setting min_dist: 0.1,
n_neighbors: 50, hub_num: 150). The value of the tweaked hyperparameter is depicted above each projection. To produce reliable projections,
we need to use a small min_dist (second row) and a sufficiently high hub_num. If these conditions are met, UMATO produces projections with
similar structures regardless of hyperparameter values.

7 EFFECTS OF HYPERPARAMETERS IN UMATO
We describe how the hyperparameters of UMATO affect the result-
ing projections as a qualitative guideline to set hyperparameters
in practice. We focus on n_neighbors and min_dist, the
hyperparameters originating from UMAP. While n_neighbors
denotes the number of NN considered in the graph construction
step (Section 3.1), min dist denotes the minimum distance be-
tween data points in the projection. We also focus on hub_num,
a hyperparameter representing the number of hubs considered in
global layout optimization (Section 3.3). We empirically find that
other hyperparameters’ (e.g., a and b in Equation 6) effect is
negligible compared to these three hyperparameters.

n_neighbors. It is widely known that n_neighbors de-
termines the degree to which UMAP focuses on global struc-
ture [78], [9]. While low n_neighbors makes UMAP more
focused on the fine-grained local structure, high value makes it
better represent the global structure. We find that UMATO also
focuses more on local structure when n_neighbors is small.
For example, in the first row of Figure 13, low n_neighbors
leads to projections with relatively small clusters. This is because
an insufficient number of n_neighbors makes the algorithm
interpret local clusters as a set of loosely connected components.
Such a phenomenon also occurs in UMAP [78].

However, even with low n_neighbors, the global structure
of HD data is well preserved. As seen in Figure 13, regardless
of n_neighbors value, UMATO preserves the global shape of
the Mammoth skeleton. Such results validate the effectiveness of
our two-phase optimization scheme in preserving global structure
robustly.

min_dist. In UMAP, this hyperparameter controls the clumpi-
ness of projections; smaller min_dist values lead to tightly
condensed clusters. In contrast, such an effect is minimized in
UMATO. For example, in the second row of Figure 13, small
min_dist does not change the overall compactness of clusters.
This is because the global optimization (Section 3.3), which
determines the overall shape of the projection, is executed with
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Fig. 14. Normalized T&C and KL divergence scores of UMATO pro-
jections with different hub_num. The scores are normalized by dividing
each score by the maximum score obtained within its respective dataset.
Note that we use the value subtracted from 1 for KL divergence to max
bigger values to indicate better projections. Trend lines are fitted follow-
ing the logistic function. While T&C scores converge to the maximum
value around hub_num = 200, KL divergence scores do not converge
until hub_num exceeds 350.

a relatively small number of points. Regardless of the decrease in
min_dist, the pairwise distances of these points are sufficiently
larger than min_dist, and therefore, the global structure of the
projection remains unchanged.

However, we find that the overall structure of projections
suddenly collapses when min_dist increases beyond a certain
threshold (Figure 13, second row). We investigate that not only
local structures but also global structures are distorted in these
projections, implying that high min_dist values disturb global
optimization. This is because a high min_dist value makes hub
points uniformly distributed across the projection space, thereby
marginally capturing the true global structure of the original HD
data. In conclusion, we recommend using a low min_dist value
to produce reliable projections in practice. We empirically find
that the value around 0.1 produces reliable projections overall.

hub_num. We investigate that with large hub_num, UMATO
produces projections with a reliable global structure. Meanwhile,
UMATO projections with small hub_num have a distorted struc-
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ture, where points are randomly mixed (Figure 13, third row).
Intuitively, this is because a small number of hub points may not
accurately represent the overall skeletal layout of the original HD
data.

To thoroughly examine a sufficient number of hub_num, we
conduct an additional experiment that investigates the accuracy of
UMATO projections with different hub_num. We first generate
projections of 20 datasets we use in previous experiments (Table 1)
while setting hub_num from 20 to 400 with an interval of 20.
We set n_neighbors to 75 and min_dist to 0.1, which are
the default values of our implementation. We then assess the
accuracy of projections using a local metric (F1 score of T&C
with k = 10) and a global metric (KL divergence with σ = 0.1).
Since KL divergence scores closer to 0 indicate more accurate
projections, we subtract each KL divergence score from 1 to derive
the corresponding value. Finally, to account for varying dataset
difficulty, we normalized the scores by dividing each score by the
maximum score achieved within its respective dataset.

The result is depicted in Figure 14. While the T&C score
converges to its maximum achievable value when hub_num
reaches 200, the KL divergence converges around 350 with greater
variance. The results suggest that UMATO demonstrates its max-
imum ability to preserve local structure with a smaller hub_num
compared to what is needed for preserving global structure. Based
on the result, we recommend using hub_num greater than 200
for analytic tasks focused on local structures (e.g., neighborhood
identification) and values greater than 350 for tasks focused on
global structures (e.g., cluster density estimation).

8 DISCUSSION

8.1 Tradeoffs in UMATO

We discuss two prevalent tradeoffs of DR revealed by our study:
(1) the tradeoff between local accuracy and global accuracy, and
(2) the tradeoff between overall accuracy and running time.

Tradeoff between local and global accuracy. UMATO’s two-
phase optimization scheme brings a clear tradeoff between accu-
racy in preserving local and global structures. The scheme aids the
algorithm in achieving substantial enhancement in terms of global
structure preservation and stability. However, the scheme also
leads to lower accuracy in depicting local structures (Section 4.1).
UMATO thus may poorly support users in conducting local tasks,
e.g., identifying nearest neighbors of a given point [82]. Here,
designing a new DR technique that can explicitly and clearly
control the tradeoff between local and global accuracy will be
an interesting avenue to explore, as such a technique will allow
users “tune” their DR projections to align with their task. Still,
our demonstrations verify that UMATO’s balance between local
and global structures leads to better preservation of HD structures
overall. In summary, UMATO’s strength lies in its ability to
illuminate broader patterns in HD data, providing users with more
chances to gain new insights.

Tradeoff between accuracy and runtime. Another side effect
caused by our optimization design is the addition of hub_num,
a hyperparameter that substantially affects final projections. The
emergence of a new hyperparameter adds additional complexity
while using UMATO in practice. To alleviate this problem, we
provided a guideline to select a proper hub_num, which is to
set a sufficiently large value (Section 7). However, we cannot
indefinitely raise hub_num as it will also increase the runtime

(Section 3.4). To overcome such a tradeoff, we plan to develop an
automatic algorithm that finds a good hyperparameter setting [87]
that matches a given dataset. We also plan to make UMATO more
stable against changes in hyperparameters. Conducting a large-
scale benchmark of UMATO to find the hyperparameter setting
that works well, in general, will also be interesting for future work.

8.2 Limitations and Future Works
We discuss the limitations of this research and possible future
works.
Making UMATO scalable and interactive. We believe that
UMATO has plenty of room to be improved. First, UMATO’s
scalability can be revisited. Currently, UMATO only runs on
a CPU, where the main bottleneck is kNN computation and
local optimization (Section 4.2.3). Although our implementation
utilizes parallelization based on multithreading, these two stages
may be further accelerated using heterogeneous systems, such as
GPU [88], [89] or FPGA [90]. We can also make the algorithm
progressive [91] or parametric [92] (i.e., be able to project unseen
data based on previously trained data), making UMATO suitable
for responsive visual analytics systems. Furthermore, identify-
ing the optimal number of iterations in local optimization will
substantially reduce the runtime. These efforts will help us to
add interactivity to UMATO. For example, if local optimization
can be performed in real-time, we can allow users to steer hub
points based on their background knowledge [47]. Second, we
do not know whether the current way of selecting hub points
(kNN-based hub selection; Section 3.2) is the optimal way to do
so. Investigating alternative ways (e.g., stratified sampling using
clustering algorithms [93]) will be an interesting future work.
Conducting further evaluations. We want to evaluate UMATO
in detail. For example, we have not yet investigated UMATO’s
effectiveness in real-world settings. Exploring UMATO’s potential
in practical applications through a user study will be an interesting
future avenue. We also plan to conduct a user study evaluating
UMATO based on participants’ task accuracy [82], [7] or analyti-
cal preferences [94], [95].
Applying two-phase optimization scheme to other algorithms.
We verify that the two-phase optimization can improve the global
accuracy of DR techniques. Intuitively, we can further investigate
whether such a scheme can aid other data abstraction algorithms
(e.g., clustering). For example, we may apply UMATO to produce
graph layouts (e.g., force-directed layout [96]), as Kruiger et al.
[97] did with t-SNE.

9 CONCLUSION

We design and implement a novel DR technique called UMATO.
UMATO divides the optimization of UMAP into two phases,
preserving both global and local structures of HD data simulta-
neously. UMATO thereby provides a more faithful visual repre-
sentation of how manifolds are arranged in the original HD space.

Our quantitative experiments with diverse real-world datasets
validate the accuracy of UMATO in accurately preserving local
and global structures (e.g., UMAP and its variants). We also qual-
itatively demonstrate UMATO’s accuracy using synthetic datasets.
By providing guidelines for setting hyperparameters and releasing
an open-source library, we pave the way for using UMATO
in practice. In summary, our research contributes a significant
advancement in the DR research community, opening up opportu-
nities for more reliable and efficient visual analytics.
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