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ABSTRACT

We introduce Uniform Manifold Approximation with Two-phase
Optimization (UMATO), a dimensionality reduction (DR) tech-
nique that improves UMAP to capture the global structure of high-
dimensional data more accurately. In UMATO, optimization is
divided into two phases so that the resulting embeddings can depict
the global structure reliably while preserving the local structure with
sufficient accuracy. In the first phase, hub points are identified and
projected to construct a skeletal layout for the global structure. In
the second phase, the remaining points are added to the embedding
preserving the regional characteristics of local areas. Through quan-
titative experiments, we found that UMATO (1) outperformed widely
used DR techniques in preserving the global structure while (2) pro-
ducing competitive accuracy in representing the local structure. We
also verified that UMATO is preferable in terms of robustness over
diverse initialization methods, numbers of epochs, and subsampling
techniques.

Index Terms: Human-centered computing— Visualization—
Visualization techniques; Computing methodologies—Machine
learning—Machine learning algorithms

1 INTRODUCTION

Dimensionality reduction (DR) is one of the most useful tools for
exploring high-dimensional (HD) data in visual analytics [5, 10, 15].
In various domains, DR provides an effective means of understand-
ing HD data by enabling visual inspection of HD data [16,23,33].
Especially, nonlinear DR techniques such as 7-SNE [24], NeRV [37],
and UMAP [26] made huge success in capturing complex local
manifolds [21].

However, despite the success, nonlinear DR techniques often
work poor in preserving the global structure of data [9, 18]. For
example, in the case of 7-SNE, inaccuracy in preserving the global
structure comes from the fact that its loss function, Kullback-Leibler
(KL) divergence, assigns too little penalty for the points that are
distant in the original space and stay close in the embedding space
[26]. UMAP avoids such a problem by employing the cross-entropy
function as a loss function. However, it still barely captures the
global structure as it optimizes the layout based on a k-nearest
neighbor (kNN) graph. UMAP’s approximation for fast computation
(Sect. 2.1) also leads to inaccuracy; for example, a recent study [17]
showed that UMAP does not outperform ¢-SNE in preserving the
global structure given the same initial layout. One way to alleviate
this problem is to not use approximation, which would increase the
computational cost greatly.
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To overcome the aforementioned limitations, we present Uniform
Manifold Approximation with Two-phase Optimization (UMATO),
anovel DR technique that enhances UMAP to better preserve the
global structure. In UMATO, optimization is first run for a small
number of points that represent the data (i.e., hub points). As finding
the optimal embedding for a small number of points is relatively
easy and robust, this makes approximation unnecessary and thus
leads to the better preservation of the global structure. Moreover,
this procedure makes the embedding more stable and less sensitive
to initialization methods. After capturing the overall skeleton of the
HD structure with the hub points, we gradually append the rest of
the points in subsequent phases. Although the same approximation
techniques as UMARP are used for these points, the embedding be-
comes more accurate in preserving the global structure because we
use already embedded hub points as anchors.

We quantitatively compared UMATO against five widely used DR
techniques using four datasets. The embeddings were then analyzed
with global and local quality metrics such as KL divergence and
Trustworthiness & Continuity [36], respectively. As a result, we
found that UMATO outperformed the competitors in preserving the
global structure while showing competitive performance in preserv-
ing the local structure. We also found that UMATO is more stable
against sampling fluctuations and changes in the number of epochs,
and is less sensitive to the initialization methods, compared to the
competitors (Appendix D, E, and F).

2 BACKGROUND AND RELATED WORKS
21 UMAP

Because UMATO shares the overall pipeline of UMAP, we provide
a brief introduction to UMAP. Although UMAP is grounded in a so-
phisticated mathematical foundation, its computation can be simply
divided into two steps, graph construction and layout optimization.
Graph Construction. UMAP starts by generating a weighted kNN
graph; given k (the number of NN to consider) and a distance metric
d: X x X — [0,00), UMAP first computes .4}, the kNN of x; with
respect to d. Then, two parameters, p; and o;, are computed for
each data point x; to identify its local metric space. p; is a nonzero
distance from x; to its nearest neighbor:

pi = [ in{d(xi,xj) | d(x,-,xj) > 0} (1)
JEN:
Using binary search, UMAP finds o; that satisfies:
Z exp(—max(0,d(x;,x;) — p;)/0;) = logy (k). 2)
jeN
Next, UMAP computes:

vjji = exp(—max(0,d(x;,x;) — pi)/ 01, 3

which is the weight of the edge from a point x; to another point x;.
A combined weight of a edge is then defined as vjj = v;; +v;; —
vjji - vi|j- In the embedded space, the similarity between two points

yi and y; is defined as w;; = (1+al|y; —y;|[3?) !, where a and b
are positive constants defined by users. Setting both a and b to 1 is
identical to using Student’s 7-distribution to measure the similarity.
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Layout Optimization. The goal of layout optimization is to find
the y; that minimizes the difference (or loss) between v;; and w;;.
Unlike 7-SNE, UMAP employs cross-entropy:

CE =Y [vij-log(vij/wij) — (1= vij) -log((1 —vij) /(1 = wij))],

i#]

“)
between v;; and w;; as the loss function. UMAP initializes y; through
spectral embedding [2] and iteratively optimizes its position to min-
imize CE. Given the output weight w;; as 1/(1 —O—adl-zjb ), where

dizjb =|lyi = y,]|3°, the attractive gradient is:

CE™+ 72abdl-2j(b71>

= ——v;i;i(Vi—yj), 5
Vi 1+adl~2jb z_](yz y,) ©)
and the repulsive gradient is:
CE~ 2b
= L—vi)(vi—y;). 6)
yi (e+d,.2j)(1+ad,.2j")( )i =37)

€ is a small constant added to prevent division by zero and d;; is
the Euclidean distance between y; and y;. For efficient optimization,
UMAP leverages the negative sampling technique [27,33,34]. The
technique first chooses a target edge (i, /) and M negative sample
points. Then, i and j are used to compute attractive forces, while neg-
ative samples are used to compute repulsive forces; for each epoch,
positions of i, j, and negative samples are updated. Considering
negative sampling, the modified objective function is:

M
0= Y wvijllogwij)+ Y EjopjYlog(1—wij)). (7
(i7eE =

Here, v;; and w;; are the similarities in the high and low-dimensional
spaces, respectively, and Y is a weight constant to apply to negative

samples. £, p (;) means that ji is sampled from a noisy distribution

Py(j) o< degi/ 4 [27], where deg; denotes the degree of point j.

2.2 Dimensionality Reduction Techniques for Preserving
Global Structure

Preserving global structures in DR has long been considered an
important research topic [9, 14,17, 18,28]. One way is to design a
loss function or an optimization pipeline that targets global aspects
of data. For instance, Isomap [35] preserves global structure by
approximating its geodesic distances in the embedding. Another
example is TopoAE [28], a deep-learning approach that uses a gen-
erative model. To make the latent space resemble the HD space,
it appends a topological loss to the original reconstruction loss of
autoencoders [12]. However, these techniques leverage a single-step
optimization; thus, their focus on global structure reduces their atten-
tion to local structure. In contrast, UMATO focuses on both global
and local structures by dividing the optimization into two phases.

Another common scheme to capture global structure is to utilize
sample points to better model the original space; these points are
usually called hubs, landmarks, or anchors. Silva et al. [32] proposed
L-Isomap, a landmark version of classical multidimensional scaling
(MDS), to alleviate its computation cost. However, in L-Isomap,
landmarks are chosen randomly without considering their impor-
tance. HSNE [30] and HUMAP [25] instead chose landmarks based
on kNN graph, which is similar to UMATO. However, in HSNE and
HUMAP, landmarks’ main role is constructing the early stage of
hierarchical embeddings in which users can interactively drill down.
Instead, UMATO utilizes hubs to capture the global structure and
work as global anchors for the layout of non-hub points.

The most similar work to ours is Az-SNE [9], which optimizes the
anchor points and remaining points with two different loss functions.

Nonetheless, as the anchors wander during the optimization and the
loss function (KL divergence) does not care about distant points, it
barely captures the global structure (Table 1). UMATO avoids this
problem by separating hubs and non-hub points; the hubs take their
position in the first phase and barely move but guide other points
in the second phase so that the global structure can be preserved
robustly. Applying cross-entropy as a loss function also helps in
preserving both structures [26].

3 UMATO

We present UMATO, which splits UMAP’s optimization into two
phases to preserve global structure better while maintaining the
capability to represent local structure. For ease of understanding, we
illustrated the UMATO pipeline in Fig. 1, presented the pseudo code
in Appendix A, and publicized the source code [1].

3.1 Points Classification

In overall, UMATO follows the pipeline of UMAP; we first find the
kNN, and by calculating p (Equation 1) and o (Equation 2) for each
point, we obtain the pairwise similarity for every pair of points in
kNN indices. Once kNN indices are established, we unfold them
and check the frequency of each point to sort them in descending
order so that the index of the popular points can come to the front.

Then, we divide points into three disjoint sets: hubs, expanded
nearest neighbors (eNN), and outliers. At first, we repeat the fol-
lowing steps until no points remain unconnected: (1) choose the
point with the biggest frequency as a hub among points that are
not yet selected; (2) remove the kNN of the chosen hub from the
sorted list. Thanks to the sorted indices, the most popular point
in each iteration—but not too densely located—becomes the hub
point. Then, we recursively seek out hub points’ NN and again look
for the NN of those neighbors until there are no points to be newly
appended. In other words, we find all connected points that are
expanded from the original hub points, which, in turn, is called eNN.
Any remaining point, neither a hub nor an eNN, becomes an outlier.

Our optimization takes distinctive approaches for different sets
so that both global and local structures can be well preserved. That
is, we first optimize hubs for the global structure, then perform
local optimization for eNN. We do not optimize outliers to prevent
them from disturbing the overall structure of the embedding. In the
following section, we explain each step in detail.

3.2 Layout Optimization

Global Optimization. At first, we run the global optimization for
hubs to construct the skeletal layout of the embedding. First, we
initialize the positions of hub points using PCA, which makes the
optimization process more stable than using random initial positions
[18]. Next, we optimize the positions of hub points by minimizing
the cross-entropy (Equation 4). Let f(X) = {f(x;,xj)|xi,x; € X}
and g(Y) = {g(vi,¥;)|yi,y; € Y} be two adjacency matrices in high-
and low-dimensional spaces. If X, represents a set of points selected
as hubs in HD space and Y}, is a set of corresponding points in
the embedding, CE(f(X})||g(¥;)) is minimized. Unlike UMAP,
our global optimization excludes negative sampling approximation;
therefore, the embedding becomes more robust and less biased in
capturing global structure. As the optimization runs for a few hub
points, it still does not require too much time to compute.

Local Optimization. In the second phase, UMATO additionally
embeds eNN. For each eNN, we set its initial position as an average
position of m (e.g., 10) NN with a small random perturbation. We
then perform local optimization, similar to UMAP but slightly differ-
ent. As explained in Sect. 2.1, UMAP starts by constructing a kNN
graph; we perform the same task but only with the hubs and eNN.
To do this, we need to update kNN indices constructed in advance
(Sect. 3.1) to exclude outliers. We do this by simply replacing the
outliers with new NN; thus, the computation is inexpensive.
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Figure 1: The illustration of the overall UMATO pipeline. Based on (1) given HD data, (2) we first find kNN for each point. (3) Then, we count the
frequency of each point in the kNN index table and sort them in decreasing order (4) Next, points are categorized into hub points, expanded
nearest neighbors (eNN), and outliers based on their connectivity to other points. (5) We initialize and optimize the positions of hubs (global
optimization). (6) Leveraging the hubs’ positions, the positions of eNN are optimized (local optimization). (7) Finally, outliers are arranged. The
procedures described in Sect. 3.1 are depicted with purple arrow and captions, while the ones described in Sect. 3.2 are represented in blue.

Afterward, similar to UMAP, local optimizations of hubs and eNN
are performed based on the cross-entropy loss function. The negative
sampling technique (Equation 7) is also leveraged. However, rather
than updating the positions of entire points equally, UMATO tries to
keep the positions of hubs as much as possible because they have
already formed the global structure. For this aim, while sampling
a target edge (i, j), we select i among eNN and choose j from both
hubs and eNN. Then, if j is a hub, we penalize the attractive force
for j by assigning a small weight (e.g., 0.1). This makes j not
excessively affected by i if it is a hub point. In addition, as repulsive
force can disperse the local attachment, making the point veer off for
each epoch and eventually destroying the well-shaped global layout,
we multiply a penalty (e.g., 0.1) when calculating the repulsive
gradient (Equation 6) for the points selected as negative samples.
Outliers Arrangement. Isolated points (i.e., outliers) mostly have
the same distance to all the other data points in HD space due to the
curse of dimensionality [3]. Therefore, optimizing outliers can make
them mingle with the already embedded points (i.e., hubs, eNN),
thus sabotaging global and local structures. Therefore, we do not op-
timize outliers but simply append them using a previously embedded
point that is located nearest to each outlier in the HD space. That is,
for an outlier x; € C,, where C,, is the connected component to which
x; belongs, we first find x; € C, that has already been embedded
and is closet to x;. Then, we set the low-dimensional position of x;
as the one of x; with random noise. This helps us benefit from the
comprehensive composition of the embedding that we have already
optimized. Note that all outliers can find a previously embedded
point as their neighbor. This is because we picked more than one hub
from each connected component of the NN graph, and thus at least
one point of each component has an optimized position (Sect. 3.1).

4 QUANTITATIVE EXPERIMENT

To evaluate UMATO in preserving global and local structures of HD
data, we conducted experiments on one synthetic (Spheres) and three
real-world datasets (MNIST [19], Fashion MNIST (FMNIST) [39],
and Kuzushiji MNIST (KMNIST) [8]). We compared UMATO
with six baseline DR techniques (PCA, Isomap, -SNE, UMAP,
TopoAE, and Az-SNE) utilizing global (DTM, KL divergence) and
local (T&C, MRRESs) quality metrics.

4.1 Design

Datasets. For a synthetic dataset, we used Spheres [28]; it consists
of 11 101-dimensional spheres, where ten spheres with relatively
small radius of 5 and the number of points of 500 are enclosed by a
larger sphere with a radius of 25 and the number of 5,000. A total of
10,000 points form the data. In the case of real-world datasets, we
used MNIST, FMNIST, and KMNIST. The datasets represent images
of digits, fashion items, and Japanese characters, respectively, and
consist of 60,000 rows of 784-dimensional (28 x 28) vectors.

Metrics. To analyze DR techniques in diverse perspectives, we
utilized several global and local quality metrics. For global met-

rics, we utilized Distance to a Measure (DTM [6,7]) and KL diver-
gence. Both assesses how well embeddings capture global structure
in terms of density estimation. We selected such density-based
metrics to align our experiment with the one of TopoAE [28].
In two functions, the density of each HD point x is defined as
fX(x) := Lyex exp(—dist(x,y)? /o), where X denotes the dataset.
The density of corresponding low-dimensional point y is defined as
fZ(z), where Z denotes the embedding. Then, DTM is computed
as ¥(x2)e(x.2) FX(x) = f%(z), while KL divergence is defined as
KL(fX(x)||f%(z)). In accordance with the experiment of TopoAE,
we used three o values, 0.01, 0.1, and 1, for both measures.

In the case of local metrics, we used mean relative rank errors

(MRRE:s [20]) and Trustworthiness & Continuity (T&C [36]), which
quantifies the quality of embedding based on the preservation of
neighborhood structure. While Trustworthiness and MRRE evalu-
ate the extent to which neighbors in the embedding are also neigh-
bors in the HD space, Continuity and MRREy evaluate the opposite.
These two metrics are selected because they have been widely used
in DR literature [11, 14,28]. They require a hyperparameter k, the
number of nearest neighbors; we used k = 5 throughout our exper-
iments, aligned with the experiment of TopoAE [28]. The results
with £ = 10 and k = 15 are depicted in Appendix C.
Baseline DR techniques. For competitors, we used the most
widely used techniques plus the ones that focus on global structures
(Sect. 2.2). For the former, PCA, t-SNE, and UMAP were picked,
and for the latter, Isomap, Az-SNE, and TopoAE, were picked. To
initialize an embedding, we used PCA for -SNE, following the
recommendation in previous work [22], and spectral embedding for
UMAP, which is the default. The embeddings are depicted in Fig. 2.
The hyperparameters of the techniques are set to minimize KLg ;.
Appendix B describes our hyperparameter setting in more detail.

4.2 Results

Table 1 displays the quantitative evaluation results. In terms of
global metrics, UMATO surpassed all other techniques for Spheres
and exceeded all techniques except Isomap for MNIST and FMNIST.
Although UMATO did not indisputably show the best performance
for KMNIST, it still surpassed other techniques if ¢ = 0.1, while
there was no winner for 0 = 0.01 and 1. TopoAE and Isomap
also showed good performance in preserving global metrics overall.
Although Az-SNE uitlizes landmark based optimization, which is
similar to UMATO, it showed competitive scores to neither UMATO
nor other global techniques. For local metrics, -SNE and UMAP
were common winners. However, UMATO showed competitive
performance in terms of MRREy and continuity for FMNIST and
KMNIST and in terms of MRRE7 and Trustworthiness for Spheres.

4.3 Discussions

The results clearly show the benefit of UMATO in preserving the
global structure. The shape of embeddings also supports such a
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Global quality metrics

Local quality metrics (k = 5)

Dataset Algorithm DTMoy.01 DTMy DTM, KL 01 KLy KL, Conti. Trust. MRREy MRRE;
PCA 1.0123 0.9950 0.1687 0.7568 0.6525 0.0153 0.7983 0.6088 0.7985 0.6078

Isomap 0.7020 0.7784 0.1282 0.4492 04267 0.0095 0.9041 0.6266 0.9039 0.6268

t-SNE 0.9331 0.9144 0.1532 0.6091 0.5399 0.0130 0.8916  0.7078 0.9045 0.7241

Spheres UMAP 0.9474 0.9209 0.1548 0.6100  0.5383 0.0134 0.8760  0.6499 0.8805 0.6494
TopoAE 0.4099 0.6890 0.1197 0.2063  0.3340  0.0076 0.8317 0.6339 0.8317 0.6326

At-SNE 0.9634 0.9448 0.1589 0.6584  0.5712  0.0138 0.8721 0.6433 0.8768 0.6424

UMATO (ours) 0.3271 0.3888 0.0529 0.1341 0.1434  0.0014 0.7884  0.6558 0.7887 0.6557

PCA 0.9373 0.2315 0.0255 0.6929  0.0454  0.0006 0.9843 09117 0.9853 09115

Isomap 0.9228 0.2272 0.0352 0.6668  0.0446  0.0010 0.9865 0.9195 0.9872 0.9196

t-SNE 0.9987 0.2768 0.0442 0.8079  0.0663 0.0017 0.9899  0.9949 0.9919 0.9955

Fashion MNIST UMAP 1.0125 0.2755 0.0438 0.8396  0.0641 0.0016 0.9950  0.9584 0.9955 0.9584
TopoAE 0.9402 0.2329 0.0311 0.7301 0.0446  0.0008 0.9908 0.9591 0.9913 0.9590

At-SNE 1.0187 0.2973 0.0454 0.8389  0.0702  0.0017 0.9826  0.9847 0.9849 0.9848

UMATO (ours) 0.9360 0.2035 0.0314 0.6852  0.0342  0.0008 0.9911 0.9500 0.9919 0.9502

PCA 1.3237 0.4104 0.0426 1.4981 0.1349 0.0014 0.9573 0.7340 0.9605 0.7342

Isomap 1.1936 0.3358 0.0382 1.0361 0.0857  0.0012 0.9743 0.7527 0.976 0.7528

t-SNE 1.3193 0.4263 0.0553 1.4964  0.1523 0.0024 0.9833  0.9954 0.9869 0.9963

MNIST UMAP 1.3428 0.4172 0.0588 1.5734  0.1430  0.0026 0.9891 0.9547 0.9907 0.9547
TopoAE 1.3038 0.3686 0.0366 1.3818 0.1048 0.0011 0.9716  0.9429 0.9732 0.9429

At-SNE 1.3312 0.4328 0.0466 1.5623 0.1482  0.0018 0.9768 0.9765 0.9830 0.9777

UMATO (ours) 1.2738 0.3525 0.0414 1.2785  0.1017  0.0014 0.9792  0.8421 0.9813 0.8422

PCA 0.3756 0.4215 0.0440 0.1710  0.1317 0.0014 0.9380  0.7213 0.9420 0.7211

Isomap 0.5267 0.3458 0.0379 0.2171 0.0906  0.0012 0.9573 0.7638 0.9589 0.7635

t-SNE 0.2360 0.4254 0.0571 0.0483  0.1369 0.0025 0.9843 0.9688 0.9871 0.9693

Kuzushiji MNIST UMAP 0.2126 0.3873 0.0566 0.0417  0.1148 0.0026 0.9893  0.9563 0.9908 0.9564
TopoAE 0.3934 0.3730 0.0373 0.1495 0.1027 0.0011 0.9755 0.9442 0.9768 0.9440

At-SNE 0.3029 0.3505 0.0384 0.0807 0.0978 0.0013 0.9786  0.9671 0.9824 0.9676

UMATO (ours) 0.3993 0.3231 0.0435 0.1365 0.0815  0.0016 0.9865  0.8888 0.9881 0.8895

Table 1: Quantitative results of UMATO and six baseline algorithms. The hyperparameters of the DR algorithms are chosen to minimize KL ;.
The best one is bold and underlined, and the runner-up is bold. Only the first four digits are shown for conciseness.
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Figure 2: 2D embeddings of UMATO and six competitors. Overall,
UMATO surpassed other techniques in preserving global structure
while showing comparable performance in capturing local structure. A
high-resolution version of this figure is provided in Appendix J.

claim. If we look at the first row of Fig. 2, we can see that the outer
sphere encircles the inner spheres in a circular form in UMATO’s
embedding, which is the most intuitive to understand the global
relationship among different classes. However, all other embeddings
did not show a clear separation between the outer and inner spheres.

Combining results from both global and local metrics, we can
conclude that UMATO achieved high performance in capturing
global structure at a slight loss for local structure preservation. Such
a result aligns well with the design of UMATO; hubs help UMATO
capture global structure in the first phase but work as a constraint
for local optimization of eNN. Still, the fact that UMATO showed
competitive performance in preserving local structures to -SNE and
UMAP clearly demonstrates its merit in analyzing HD data.

Refer to Appendix I for the results using synthetic datasets (e.g.,
Swiss Roll) that support our claim about UMATO’s capability.

5 ADDITIONAL EXPERIMENTS

We conducted additional experiments to understand UMATO’s fea-
tures better and verify its benefit. At first, we compared the runtime
of UMATO against previous nonlinear DR techniques (Appendix G).
We also verified that UMATO avoids UMAP’s problem of clusters’
becoming dispersed as the number of epochs increases (Appendix
D), and revealed that UMATO outperforms UMAP and 7-SNE in
terms of stability over subsampling (Appendix E) and robustness
over diverse initializations (Appendix F). Finally, we discovered
that utilizing more than two phases failed to improve the embedding
results while consuming more computation time (Appendix H).

6 CONCLUSION

We present a two-phase DR algorithm called UMATO that can ef-
fectively preserve the global and local properties of HD data. In our
experiments with diverse datasets, we have proven that UMATO out-
performs previous widely used baselines (e.g., Z-SNE and UMAP) in
capturing global structures while showing competitive performance
in preserving local structures. In the future, we plan to optimize and
accelerate UMATO in a heterogeneous system (e.g., GPU), as in
previous attempts with other DR techniques [29,31]. Qualitatively
analyzing UMATO’s effect in analyzing HD data, such as visual
cluster analysis [4, 13,38], will also be an interesting direction.
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