
SwiftTuna: Incrementally Exploring Large-scale Multidimensional Data

Jaemin Jo∗ Wonjae Kim† Seunghoon Yoo‡ Bohyoung Kim§ Jinwook Seo¶
Seoul National

University
Seoul National

University
Seoul National

University
Hankuk University of

Foreign Studies
Seoul National

University

ABSTRACT
The advance in distributed computing technologies opens up new
possibilities of data exploration even for datasets with a few billion
entries. In this paper, we present SwiftTuna, an interactive system
that brings in modern cluster computing technologies (i.e., in-
memory computing) to InfoVis, allowing rapid and incremental
exploration of large-scale multidimensional data without building
precomputed data structures (e.g., data cubes). Our performance
evaluation demonstrates that SwiftTuna enables data exploration of
a real-world dataset with four billion records while preserving the
latency between incremental responses within a few seconds.

Keywords: Large-scale data exploration, incremental querying.

1 INTRODUCTION
Although there have been great advances in visualization and
database technologies, interactive visual analysis of large-scale

multidimensional data is still challenging. The foremost issue is the
long latency of queries that comes from the magnitude of the data.
Querying on large-scale data often takes a few minutes or even a
few hours, which not only delays analysts’ decision making process
but also makes them constantly pause analysis, hindering fluent
data exploration.

To resolve the latency issue, previous InfoVis system often
adopted the preprocessing paradigm where a certain data structure
is precomputed from data in advance and used to answer future
queries. One of the most widely used data structures is data cubes
[1] that aggregate raw data by each dimension or the combinations
of the dimensions. Several InfoVis studies ameliorated data cubes
to be more suitable for visual analytics: imMens [2] converted data
cubes to multivariate data tiles to support interactive linking
between visualizations, and Nanocubes [3] significantly reduced
the memory consumption of data cubes by sharing duplicate keys.

The preprocessing paradigm guarantees low latency for queries
at the cost of time and space for preprocessing. For example, since
data cubes intrinsically permutate dimensions in data, they
consume a large amount of memory as more dimensions are
involved in querying (e.g., filtering with multiple dimensions).
Although Nanocubes slowed down the explosion of memory
footprint of data cubes, it eventually reached the limitation of a
single physical machine when the data became much larger [3].

We introduce SwiftTuna, a scalable approach to enable fluent
visual exploration of large-scale multidimensional data. SwiftTuna
does not reside on precomputed data structures. Rather, SwiftTuna
incrementally processes visualization queries by splitting the raw
data into blocks and processing each block on a computing cluster

Figure 1: Interface of SwiftTuna. An analyst is exploring a multidimensional dataset with 100 millions of entries. Visualization cards (two
expanded cards and five thumbnail cards) on the right side provide a univariate summary on a single dimension or visualize the relationship
between two dimensions. The analyst expanded two visualization cards to further interact with them. The card list panel (A and B) on the
left side shows the list of all visualization cards as well as the progress of each card.

*e-mail: jmjo@hcil.snu.ac.kr
†e-mail: wjkim@hcil.snu.ac.kr

‡e-mail: shyoo@hcil.snu.ac.kr

§e-mail: bkim@hufs.ac.kr

¶e-mail: jseo@snu.ac.kr

LEAVE 0.5 INCH SPACE AT BOTTOM OF LEFT
COLUMN ON FIRST PAGE FOR COPYRIGHT BLOCK

in a parallel and distributed manner. Thus, our approach allows
queries that span multiple dimensions (e.g., filtering with multiple
dimensions) without building large data structures. Also, even if the
size of data exceeds the capability of a single machine, we can still
handle the data by scaling the cluster’s size, which was not possible
in the previous studies [2][3].

2 THE SWIFTTUNA DESIGN
SwiftTuna employs a client-server architecture. The client is a
single-page web application where users can create queries,
monitor the progress of the queries in real time, and interact with
results to explore data (Figure 1). We present the design
considerations and how we realized those considerations as follows:

DC1. Provide low-fidelity feedback promptly. A delayed
response hinders users from observing the data and causes them to
lose their attention. To enable fluid data exploration, we provide
low-fidelity feedback promptly (i.e., prompt responses) based on a
small sample from the data (i.e., 0.001% of entries).

DC2. Process results incrementally while estimating the final
results. We visualize partial results of analytics and estimate the
final results before a query is fully completed. We adopted gradient
plots to visualize the uncertainty of partial results (i.e., 95%
confidence intervals of counts and means, Figure 1C). This enables
users to confirm or reject their hypotheses as early as possible
during their exploratory analysis and thus test more hypotheses
with limited time and resources.

DC3. Enable flexible scheduling. To amplify the use of partial
results, the system provides flexible management of computing
resources. For example, users can pause or stop queries in real time
if they think partial results are enough for decision-making. (Figure
1B)

DC4. Support multidimensional data exploration. SwiftTuna
organizes multiple visualizations in a single view that show various
aspects of data in a series of 1D or 2D projections including
frequency histograms (for a categorical dimension), binned
histograms (for a numerical dimension), pivot dot plots
(aggregating a numerical dimension by a categorical dimension),
and density plots (for two numerical dimensions) (Figure 1A).

DC5. Scalability in visualizations. To achieve scalability in
visualizations, we adopted interaction techniques such as
Focus+Context and brushing (Figure 1D). Also, to show
categorical data in limited space, we designed a novel visualization,
tailed charts (Figure 1E), which visualize prominent categories
(e.g., the most frequent five categories) with salient visual elements
in half of visual space, while the rest of the categories are outlined
in another half of the space with a line (i.e., a tail).

On the server side, when a query from the client arrives (e.g.,
users applied a filter or added a new visualization), the server first
processes the query only using a small sample for prompt responses.
Then, the server equally splits the entire data into n blocks and
processes the query using each block in randomized order on a
cluster. We used Apache Spark for cluster computing. Note that
each block is split again as many sub-blocks as the number of
workers in the cluster for parallel computing. When finished, the
server gathers the results from the workers and sends them back to
the client as an incremental result.

3 PERFORMANCE BENCHMARK
We conducted performance benchmarks using Criteo’s Terabyte
Click Logs dataset [4] that consisted of 4.3B entries with 40
dimensions. We created a cluster on Amazon Elastic Compute
Cloud (EC2) with 16 spot instances of the r3.8xlarge tier. We
measured 1) the latency of prompt responses (the time from when
users requested a query to when the first feedback on the query was
shown), 2) the mean interval between two successive incremental
responses. We considered the number of blocks, n, as an

independent factor and tested our system under two different values
of n: 240 and 2,400 blocks.

Table 1 shows the results of the benchmark using four types of
queries. Each block could be processed in three seconds for all
types of queries, which means users could grasp updated results
every three seconds. A smaller-size block (n = 2,400) yielded faster
responses, as expected. However, a bigger block was preferred in
terms of throughput. For example, when n was 2,400, it took 1.91
seconds to sweep 1.75 millions of rows in a block and create a
binned histogram. However, it took only approximately two times
longer (3.54 seconds) to process ten times more rows (17.5 millions
of rows) when n was 240. This implies that an overhead such as
network latency or the communication lag between workers lies in
SwiftTuna which cannot be efficiently parallelized.

4 RESEARCH WITH SWIFTTUNA
Although SwiftTuna is still an ongoing work, we were able to
demonstrate how modern distributed computing technologies are
integrated into a visual analytics system to allow rapid and
incremental data exploration without precomputation. We plan to
extend the results of this research towards the following directions:

1. Providing a general platform for incremental visual analysis
on clusters: We plan to combine each building blocks of SwiftTuna
as a generalized platform so that analysts can easily extend the
system for their own scenarios without editing or knowing all
underlying architecture.

2. Designing scalable and incremental visualizations: As we
designed tailed charts to visualize a number of categories, we seek
novel visualization that are suitable for incremental and large-scale
visualizations.

ACKNOWLEDGMENTS
The authors wish to thank A, B, C. This work was supported in part
by a grant from XYZ.

REFERENCES
[1] S. Chaudhuri and U. Dayal, "An Overview of Data Warehousing and

OLAP Technology," SIGMOD Record, vol. 26, no. 1, pp. 65-74, Mar.
1997.

[2] Z. Liu, B. Jiang, and J. Heer, “ImMens: Real-time Visual Querying of
Big Data,” Computer Graphics Forum, vol. 32, no. 3, part. 4, pp. 421-
430, 2013.

[3] L. Lins, J. T. Klosowski, and C. Scheidegger, "Nanocubes for Real-
Time Exploration of Spatiotemporal Datasets," IEEE Trans.
Visualization and Computer Graphics, vol. 19, no. 12, pp. 2456-2465,
Dec. 2013.

[4] Criteo's Terabyte Click Logs, http://labs.criteo.com/
downloads/download-terabyte-click-logs, retrieved on March 2016.

Table 1. Results of Performance Benchmark

Type Range or
Cardinality

Prompt
Responses (s)

Incremental
Responses (s)a

Binned
Histogram 0 – 35M 0.20±0.025 1.91±0.84

(3.54±1.58)

Density Plots 0 – 746K
0 – 35M 0.31±0.040 1.88±0.61

(3.46±1.05)
Frequency
Histogram 20K 0.39±0.058 2.85±0.78

(3.93±1.31)
Pivot Dot

Plots 7.4K 0.52±0.085 2.53±1.21
(3.88±0.93)

aNumbers are measurements with 2,400 blocks (and with 240 blocks).
Range or Cardinality: range (for a numerical dimension) or cardinality
(for a categorical dimension) of dimensions related to each query.

	SwiftTuna: Incrementally Exploring Large-scale Multidimensional Data
	Abstract
	Keywords: Large-scale data exploration, incremental querying.
	1 Introduction
	2 The SwiftTuna Design
	3 Performance Benchmark
	4 Research With SwiftTuna
	Acknowledgments
	References

