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ABSTRACT 
The advance in distributed computing technologies opens up new 
possibilities of data exploration even for datasets with a few billion 
entries. In this paper, we present SwiftTuna, an interactive system 
that brings in modern cluster computing technologies (i.e., in-
memory computing) to InfoVis, allowing rapid and incremental 
exploration of large-scale multidimensional data without building 
precomputed data structures (e.g., data cubes). Our performance 
evaluation demonstrates that SwiftTuna enables data exploration of 
a real-world dataset with four billion records while preserving the 
latency between incremental responses within a few seconds. 
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1 INTRODUCTION 
Although there have been great advances in visualization and 
database technologies, interactive visual analysis of large-scale 

multidimensional data is still challenging. The foremost issue is the 
long latency of queries that comes from the magnitude of the data. 
Querying on large-scale data often takes a few minutes or even a 
few hours, which not only delays analysts’ decision making process 
but also makes them constantly pause analysis, hindering fluent 
data exploration. 

To resolve the latency issue, previous InfoVis system often 
adopted the preprocessing paradigm where a certain data structure 
is precomputed from data in advance and used to answer future 
queries. One of the most widely used data structures is data cubes 
[1] that aggregate raw data by each dimension or the combinations 
of the dimensions. Several InfoVis studies ameliorated data cubes 
to be more suitable for visual analytics: imMens [2] converted data 
cubes to multivariate data tiles to support interactive linking 
between visualizations, and Nanocubes [3] significantly reduced 
the memory consumption of data cubes by sharing duplicate keys.  

The preprocessing paradigm guarantees low latency for queries 
at the cost of time and space for preprocessing. For example, since 
data cubes intrinsically permutate dimensions in data, they 
consume a large amount of memory as more dimensions are 
involved in querying (e.g., filtering with multiple dimensions). 
Although Nanocubes slowed down the explosion of memory 
footprint of data cubes, it eventually reached the limitation of a 
single physical machine when the data became much larger [3]. 

We introduce SwiftTuna, a scalable approach to enable fluent 
visual exploration of large-scale multidimensional data. SwiftTuna 
does not reside on precomputed data structures. Rather, SwiftTuna 
incrementally processes visualization queries by splitting the raw 
data into blocks and processing each block on a computing cluster 

 
Figure 1: Interface of SwiftTuna. An analyst is exploring a multidimensional dataset with 100 millions of entries. Visualization cards (two 
expanded cards and five thumbnail cards) on the right side provide a univariate summary on a single dimension or visualize the relationship 
between two dimensions. The analyst expanded two visualization cards to further interact with them. The card list panel (A and B) on the 
left side shows the list of all visualization cards as well as the progress of each card. 
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in a parallel and distributed manner. Thus, our approach allows 
queries that span multiple dimensions (e.g., filtering with multiple 
dimensions) without building large data structures. Also, even if the 
size of data exceeds the capability of a single machine, we can still 
handle the data by scaling the cluster’s size, which was not possible 
in the previous studies [2][3]. 

2 THE SWIFTTUNA DESIGN 
SwiftTuna employs a client-server architecture. The client is a 
single-page web application where users can create queries, 
monitor the progress of the queries in real time, and interact with 
results to explore data (Figure 1). We present the design 
considerations and how we realized those considerations as follows: 

DC1. Provide low-fidelity feedback promptly. A delayed 
response hinders users from observing the data and causes them to 
lose their attention. To enable fluid data exploration, we provide 
low-fidelity feedback promptly (i.e., prompt responses) based on a 
small sample from the data (i.e., 0.001% of entries).  

DC2. Process results incrementally while estimating the final 
results. We visualize partial results of analytics and estimate the 
final results before a query is fully completed. We adopted gradient 
plots to visualize the uncertainty of partial results (i.e., 95% 
confidence intervals of counts and means, Figure 1C). This enables 
users to confirm or reject their hypotheses as early as possible 
during their exploratory analysis and thus test more hypotheses 
with limited time and resources.  

DC3. Enable flexible scheduling. To amplify the use of partial 
results, the system provides flexible management of computing 
resources. For example, users can pause or stop queries in real time 
if they think partial results are enough for decision-making. (Figure 
1B)  

DC4. Support multidimensional data exploration. SwiftTuna 
organizes multiple visualizations in a single view that show various 
aspects of data in a series of 1D or 2D projections including 
frequency histograms (for a categorical dimension), binned 
histograms (for a numerical dimension), pivot dot plots 
(aggregating a numerical dimension by a categorical dimension), 
and density plots (for two numerical dimensions) (Figure 1A). 

DC5. Scalability in visualizations. To achieve scalability in 
visualizations, we adopted interaction techniques such as 
Focus+Context and brushing (Figure 1D). Also, to show 
categorical data in limited space, we designed a novel visualization, 
tailed charts (Figure 1E), which visualize prominent categories 
(e.g., the most frequent five categories) with salient visual elements 
in half of visual space, while the rest of the categories are outlined 
in another half of the space with a line (i.e., a tail).  

On the server side, when a query from the client arrives (e.g., 
users applied a filter or added a new visualization), the server first 
processes the query only using a small sample for prompt responses. 
Then, the server equally splits the entire data into n blocks and 
processes the query using each block in randomized order on a 
cluster. We used Apache Spark for cluster computing. Note that 
each block is split again as many sub-blocks as the number of 
workers in the cluster for parallel computing. When finished, the 
server gathers the results from the workers and sends them back to 
the client as an incremental result.  

3 PERFORMANCE BENCHMARK 
We conducted performance benchmarks using Criteo’s Terabyte 
Click Logs dataset [4] that consisted of 4.3B entries with 40 
dimensions. We created a cluster on Amazon Elastic Compute 
Cloud (EC2) with 16 spot instances of the r3.8xlarge tier. We 
measured 1) the latency of prompt responses (the time from when 
users requested a query to when the first feedback on the query was 
shown), 2) the mean interval between two successive incremental 
responses. We considered the number of blocks, n, as an 

independent factor and tested our system under two different values 
of n: 240 and 2,400 blocks. 

Table 1 shows the results of the benchmark using four types of 
queries. Each block could be processed in three seconds for all 
types of queries, which means users could grasp updated results 
every three seconds. A smaller-size block (n = 2,400) yielded faster 
responses, as expected. However, a bigger block was preferred in 
terms of throughput. For example, when n was 2,400, it took 1.91 
seconds to sweep 1.75 millions of rows in a block and create a 
binned histogram. However, it took only approximately two times 
longer (3.54 seconds) to process ten times more rows (17.5 millions 
of rows) when n was 240. This implies that an overhead such as 
network latency or the communication lag between workers lies in 
SwiftTuna which cannot be efficiently parallelized. 

4 RESEARCH WITH SWIFTTUNA 
Although SwiftTuna is still an ongoing work, we were able to 
demonstrate how modern distributed computing technologies are 
integrated into a visual analytics system to allow rapid and 
incremental data exploration without precomputation. We plan to 
extend the results of this research towards the following directions: 

1. Providing a general platform for incremental visual analysis 
on clusters: We plan to combine each building blocks of SwiftTuna 
as a generalized platform so that analysts can easily extend the 
system for their own scenarios without editing or knowing all 
underlying architecture. 

2. Designing scalable and incremental visualizations: As we 
designed tailed charts to visualize a number of categories, we seek 
novel visualization that are suitable for incremental and large-scale 
visualizations.  
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Table 1. Results of Performance Benchmark 

Type Range or 
Cardinality 

Prompt  
Responses (s) 

Incremental  
Responses (s)a 

Binned 
Histogram 0 – 35M 0.20±0.025 1.91±0.84 

(3.54±1.58) 

Density Plots 0 – 746K 
0 – 35M 0.31±0.040 1.88±0.61 

(3.46±1.05) 
Frequency 
Histogram 20K 0.39±0.058 2.85±0.78 

(3.93±1.31) 
Pivot Dot 

Plots 7.4K 0.52±0.085 2.53±1.21 
(3.88±0.93) 

aNumbers are measurements with 2,400 blocks (and with 240 blocks). 
Range or Cardinality: range (for a numerical dimension) or cardinality 
(for a categorical dimension) of dimensions related to each query. 
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