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This paper presents a novel method for parallelizing the seeded region growing (SRG) algorithm using Compute Unified Device
Architecture (CUDA) technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation
time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based
SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using
synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three

implementations, advocating that it can substantially assist the segmentation during massive CT screening tests.

1. Introduction

Image segmentation, which identifies features or objects in
a 2D image or in 3D volume data, is a challenging data-
dependent task in medical image analysis. Although fully
automatic segmentation, which identifies objects automat-
ically without user interaction or feedback, could serve as
an optimal solution for computer aided diagnosis (CADx),
it does not often guarantee accurate segmentation. In con-
trast, semiautomatic segmentation involving user interaction
provides faster and more accurate segmentation. There have
been substantial researches on semiautomatic segmentation
methods [1-14]. Among these studies, seeded region growing
(SRG) is one of widely used segmentation methods for
identifying relatively homogeneous objects such as lungs and
colons due to its computational simplicity [2, 3, 5, 8].

SRG detects all the connected voxels, which satisfy the
predefined condition (e.g., intensity threshold). Given a set
of seed points specified by users, their neighboring voxels
are examined to determine if they have characteristics (e.g.,
intensity value) that are similar to those of the seed points.
The neighboring voxels with sufficient similarity are collected
and then added to the segmented region. This process
continues by examining the neighbors of the added voxels for
further collection. The algorithm stops when no more voxels
are left for examination.

The computation time of SRG is theoretically propor-
tional to the number of voxels in the 3D volume data (or the
number of pixels in a 2D image) corresponding to the final
segmented region because the segmented region is expanded
by one voxel at a time. SRG identifies a small region at
an interactive speed; however, it requires up to over ten
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seconds to segment a relatively large region consisting of
more than 30 mega voxels, even on a high-end PC with,
for example, a 2.83 GHz quad-core processor and 8 GB of
memory.

In order to accelerate the SRG computation and to
make it independent of the segmented region size, a parallel
processing technique can be applied. Modern CPUs have
up to 16 cores (commonly dual-core or quad-core), and
highly parallel computing devices such as graphics processing
units (GPUs) have more than hundreds of cores [15]. Open
multiprocessing (OpenMP) can be used as a method for
parallel processing on CPU. OpenMP is an application
programming interface that supports multiplatform shared-
memory parallel programming in C, C++, and Fortran
[16]. With the advent of commodity inexpensive multicore
processors and corresponding OpenMP-capable compliers,
OpenMP has gained the popularity [17-19].

GPUs have developed very quickly in recent years, now
being much more powerful than modern CPUs [15]. GPUs
are essentially massive parallel-processing devices with many
small processing units. Therefore, they can be successfully
applied to highly parallel computing problems. GPUs became
programmable with the introduction of shader languages
(e.g., High Level Shader Language, or HLSL; OpenGL
Shading Language, or GLSL; and C for Graphics, or Cg).
However, shader language programming is complicated as
it requires prior knowledge of computer graphics. With the
advent of new technologies such as Compute Unified Device
Architecture (CUDA) [20], it has become more viable to
perform sophisticated algorithms on GPUs with relatively
simple programming methodologies.

There have been reported researches on parallelizing
segmentation algorithms using GPUs. Yang and Welch [21]
used register combiners to perform thresholding and basic
convolutions on two-dimensional color images. Their GPU
implementation with NVIDIA Geforce4 demonstrated a 30%
speedup over a CPU implementation on 2.2 GHz Intel Pen-
tium 4 CPU. Viola et al. [22] proposed a three-dimensional
segmentation method using thresholding combined with
an interactive visualization, observing nearly an eight-fold
speedup over a CPU implementation.

Rumpf and Strzodka [23] introduced the implementation
of level set segmentation on GPU. They performed 2D image
segmentation using a 2D level-set equation with intensity
and gradient forces. Lefohn and Whitaker [24] extended
that work to implement the first 3D level-set segmentation
on GPU. Their implementation allowed users to control the
curvature of the evolving segmentation interactively and sup-
ported a more complex evolution function for more accurate
segmentation. These implementations were not faster than
highly optimized CPU implementations due to the compu-
tation of level-set values for the entire image. Lefohn et al.
[25,26] enhanced their earlier work by using an optimized 3D
level-set method. Their methods computed level-set values
only on the boundary region of the level-set contour instead
of the entire image, resulting in a 10-15x speedup over highly
optimized CPU implementations. Sherbondy et al. [27] also
presented a GPU-based 3D segmentation method which used
the depth culling technique for conditional execution in
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computing level-set values on the boundary region of the
level-set contour.

Only a few approaches have been proposed that utilized
the CUDA technology to implement segmentation algo-
rithms. Vineet and Narayanan [28] presented a fast imple-
mentation of the push-relabel algorithm for mincut/maxflow
algorithm for graph-cuts using CUDA. They used 640 x 480
size benchmark images and 1024 x 1024 size synthetic images
on an NVIDIA GTX 280 for the performance comparison.
Their implementation was 10-12 times faster than the best
sequential algorithm reported. Pan et al. [29] implemented
SRG in CUDA. They compared the SRG implementations in
CUDA, Cg, and serial CPU. In their experimental results,
the CUDA implementation showed a slight improvement in
efficiency compared to the Cg implementation with large
data, but it was 1.6 times faster than the serial CPU imple-
mentation.

In this paper, we propose a novel method for parallelizing
the SRG algorithm using the CUDA technology. The seg-
mentation performance of the proposed method is assessed
in comparison with SRG implementations on single- and
quad-core CPUs and shader language programming, using
synthetic datasets and medical CT datasets.

2. Methods

2.1. CUDA Architecture. The GPUs are especially suited
to address parallel processing problems wherein the same
program is executed on many data elements in parallel.
Such data-parallel processing maps data elements (e.g., pixels
in 2D image processing or voxels in 3D rendering) to
parallel processing threads. Recently, CUDA was introduced
by NVIDIA as a general purpose computing architecture
which utilizes the parallel processing units in GPUs to solve
many complex computational problems [15]. By supporting
various high-level programming languages, CUDA enables
developers familiar with standard programming languages
such as C to adapt to the parallel programming using CUDA
at a low learning cost.

The CUDA parallel programming is based on Single
Instruction Multiple Thread (SIMT), in which multiple
threads execute the same single instruction. When a function
is called, it is executed N times in parallel by N different
CUDA threads. The CUDA threads are organized in a
hierarchical way as follows (Figure 1).

(i) Thread: each thread executes a given function and has
a unique index, called thread id.

(ii) Thread block: threads are grouped to a thread block.
Thread blocks are required to be executed independ-
ently—they should be possible to be executed in any
order, in parallel, or in succession.

(iil) Grid: a group of thread blocks are organized into a
grid. A single grid is assigned to a single GPU; thus
a grid can be executed on one GPU, not on multiple
GPUs.

Those hierarchical CUDA threads, during their exe-
cution, access data from multiple (read-write) memory
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FIGURE 1: Thread and memory hierarchy of CUDA architecture.

spaces which are also hierarchically organized matching to
the thread hierarchy. The memory hierarchy is as follows
(Figure 1).

(i) Local memory: each thread has its private local
memory.

(ii) Shared memory: each thread block has shared mem-
ory accessible by all the threads in the block. The
shared memory has the same lifetime as its corre-
sponding block. Threads in a block can cooperate
with one another by sharing the data through the
shared memory.

(iii) Global memory: all threads have access to the same
global memory. The global memory acts as the buffer
for interblock communication for all the threads in
the same GPU.

There are two additional read-only memory spaces acces-
sible by all threads and constant and texture memory spaces
(Figure 1). The global, constant, and texture memory spaces
are optimized for their specific memory usages. Based on
these thread and memory hierarchies, the CUDA architecture
brings out both high throughput and flexibility for the SIMT
paradigm.

2.2. SRG Parallelization Using CUDA Technology. The SRG
parallelization using the CUDA technology involves three
steps: volume/mask data loading, 3D thresholding, and 3D
region growing.

2.2.1. Volume/Mask Data Loading. Original volume data and
mask volume data for storing the segmentation result are
loaded from the CPU memory to the CUDA global memory.
The original volume data (CT or MR data in medical field)
typically consists of a series of 2D slice images. Each 2D
slice image has a bit depth of 12 bits/pixel, and each pixel is
packed on a two-byte boundary with four padding bits. The
CUDA device is capable of reading a 32-, 64-, or 128-bit word
from the global memory in a single instruction [15]. From a
preliminary test, a 64-bit word showed the best computation
performance. Therefore, the original volume data and the
mask volume data are both loaded into the global memory
of a 64-bit word. As the original volume data consists of 16-
bit voxels, four successive voxels along the x-axis are stored
in a single word in the CUDA global memory (GPU original
volume, or GOV) (Figure 2).

The mask volume data in the CPU memory (CPU mask
volume, or CMV) has the same resolution as the original
volume data and consists of 8-bit binary voxels, 0 for “non-
segmented” or 255 for “segmented” CMYV is loaded into two
sets of 3D memories in the CUDA global memory, denoted
by TMV (threshold mask volume for storing tentative thresh-
olding result) and RMV (region mask volume for storing final
segmentation result). Each voxel of TMV and RMV is of a
64-bit word, where eight successive mask voxels along the x-
axis in CMV are stored in a single word of TMV and RMV
(Figure 2). In this way, four voxels in the original volume and
eight mask voxels in the mask volume can be simultaneously
processed in a single CUDA operation.
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FIGURE 2: Loading of the original volume data and mask volume data from CPU main memory to CUDA global memory. GOV is GPU
original volume, CMV is CPU mask volume, TMV is threshold mask volume, and RMV is region mask volume.

while (num_updated)
{

{

if (region_mask_value(x, y, z) == 255)

if (threshold_mask _value(x, y, z) == 255)

region_mask_value(x — 1, y, z) |= threshold_mask_value(x — 1, y, z);
region_mask_value(x + 1, y, z) |= threshold_mask_value(x + 1, y, z);
region_mask_value(x, y — 1, z) |= threshold_mask_value(x, y — 1, z);
region_mask_value(x, y + 1, z) |= threshold_mask_value(x, y + 1, z);
region_mask_value(x, y, z — 1) |= threshold_mask_value(x, y, z — 1);
region_mask_value(x, y, z + 1) |= threshold_mask_value(x, y, z + 1);

threshold_mask_value(x, y, z)
num_updated = num_updated + 1;

0;

PsEUDOCODE 1: Pseudocode of 3D region growing. num_updated is the number of updated voxels in the current iteration.

2.2.2.3D Thresholding. After loading the data into the CUDA
global memory, a 3D thresholding is tentatively preformed
using a user-specified seed point. The result is then stored
into TMV. In the CUDA technology, a thread is a processing
unit in charge of operations for a voxel in the CUDA
global memory. For every voxel in the entire volume, its
corresponding thread reads its intensity value. If the current
voxel has an intensity value similar to that of the seed point
under a user-specified similarity criterion, its mask value is
set to 255 in TMYV, indicating that the voxel is processed in
the next 3D region growing step; otherwise, the mask value is
set to 0, indicating that the voxel is not be processed further.

2.2.3. 3D Region Growing. After the 3D thresholding is done,
a 3D region growing is performed by referencing only the

two mask volumes, TMV and RMV. As TMV already contains
mask results thresholded by a similarity criterion, the original
volume data does not have to be referenced in this 3D region
growing operation.

RMV for storing the final segmentation result is ini-
tialized so that only the mask value for the seed point is
set to 255. For each voxel, its corresponding thread reads
a mask value from RMV. If the current RMV mask value
is 255 (already segmented), the thread reads a mask value
from TMV (Pseudocode 1). If the TMV mask value is also
255, each RMV mask value of 6 neighboring voxels is
updated to be bitwise-ORed with the corresponding TMV
mask value. After the update of RMV mask values of the
6 neighboring voxels, the current TMV mask value is set
to 0, preventing the current voxel from being processed
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in later iterations. In this way, the segmented region start-
ing from the seed point grows along the x-, y-, and z-
axes. In Pseudocodel, threshold_mask_value (x, y,z) and
region_mask_value (x, y,z) are functions referencing the
mask values at the voxel position (x, y,z) from TMV and
RMY, respectively. These are defined as follows:

threshold_mask _value (x, y,z)

ey
= (x%8) th 8-bit value of TMV( [EJ : y,z),
region_mask_value (x, y,z)

)
= (x%38) th 8-bit value of RMVQ%J ,,‘V,Z> .

The aforementioned mask volume update is iterated until
there is no change in the RMV mask values. The counter
variable, num_updated, counts the number of threads which
update the RMV mask values. num_updated is initialized to
0 in each iteration. When a thread updates the RMV mask
values of 6 neighboring voxels, num_updated increases by 1.
If num_updated is 0 after an iteration, indicating no change in
RMYV mask values, the 3D region growing is terminated.

2.3. Advantage of CUDA Programming over Shader Language
Programming. The SRG algorithm can be implemented using
shader language programming in a similar way as in using
the CUDA technology. After the volume/mask data loading
and the seed point specification, the 3D region growing
is performed with iterative mask volume updates. Because
the GPU texture memory in shader language programming
cannot be used both for “read” and “write” operations, it is
required to allocate two texture memories, one for “read” and
the other for “write” The two texture memories switch their
roles as “read” and “write” memories after each iteration of
mask volume update.

In shader language programming, a pixel shader proces-
sor is a processing unit in charge of operations for a texel in
the GPU texture memory. For every voxel, its corresponding
pixel shader processor reads and writes mask values. If the
mask value of the current voxel is 255 (already segmented),
the corresponding pixel shader processor copies 255 to the
corresponding position in the writing mask memory. When
the current voxel has a mask value of 0 and its intensity
is similar to that of the seed point under a user-specified
similarity criterion, a bitwise-OR value of the mask values of
its six neighboring voxels is set to the position of the current
voxel in the writing mask memory. In this way, a voxel having
the intensity similar to that of the seed point and having
a segmented voxel in its 6-neighborhood is incrementally
added to the segmented region.

The SRG parallelization using shader language program-
ming has a couple of limitations due to the fundamental
constraints of shader language programming. It would be
ideal to determine if a voxel is included in the segmented
region in a single reading and a single writing operation.
However, as a pixel shader processor can update only its
corresponding single voxel value, a pixel shader processor for
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TaBLE 1: Synthetic datasets.
Segmented- Cube Cylinder Sphere
region size Sidelength ~ Height Radius Radius
(Mvoxels) (pixels) (pixels) (pixels) (pixels)
10 219 238 119 136
20 276 298 149 171
30 316 342 172 196
40 347 376 188 215
50 374 406 203 232
60 398 432 216 247

each nonsegmented voxel has to read 6 neighboring mask
voxels to update only its corresponding single mask value in
each iteration. In addition, because the pixel shader processor,
following the graphics pipeline, should write its correspond-
ing voxel value to the GPU texture memory in every iteration;
it should write a mask value to the writing mask memory
even for previously segmented voxels, resulting in redundant
writing operations.

Those limitations of shader-language-based SRG paral-
lelization can be overcome by using the CUDA technology.
In contrast to the pixel shader processor with the constraint
of single voxel writing in shader language programming, a
CUDA thread can write multiple mask values, so that the
thread can update as many as six mask values for 6 neigh-
boring voxels at once. This multiple writing can faithfully
simulate the operation of the original SRG algorithm. In
addition, the CUDA-based SRG parallelization can avoid
processing the previously segmented voxels further in an
iteration during the 3D region growing operation.

3. Experimental Results

We tested the proposed CUDA-based SRG parallelization
on an Intel Core i5-3570 desktop system with a 3.4 GHz
quad-core processor and 8 GB of memory. The system was
also equipped with a GeForce GTX 285 GPU with 1GB of
memory. For the performance comparison, we also imple-
mented the SRG using HLSL, which is one of commonly used
shader languages, on GeForce GTX 285. CUDA 2.3 and HLSL
Shader Model 4.0 with DirectX 10.0 were used. In addition,
we implemented the CPU-based SRG on single-core and
quad-core architectures. We used OpenMP library 4.0 for the
CPU-based SRG on the quad-core architecture. We tested the
four methods (CUDA, HLSL, single-core CPU, and quad-
core CPU methods) with both synthetic and patient data. The
computation times of the four methods with the patient data
were compared using Friedman tests with posthoc tests with
a P value threshold of 0.05.

3.1. Synthetic Data Results. The synthetic data included three
datasets of a cube, a cylinder, and a sphere. The volume sizes
of the synthetic data were 512 x 512 x 512 in all cases. In order
to demonstrate the effect of the size of segmented region on
the computation performance, we varied the side length of
the cube, the height and radius of the cylinder, and the radius
of the sphere (Table 1).
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TABLE 2: Patient datasets.
Patient data Number of slice Segmented—region
images size (Mvoxels)
Lung 358.8 +14.6 (332, 376) 13.6 £1.8 (11.2,16.5)
Colon 507.2 + 31.5 (468, 580) 7.0 +3.1(2.9,13.2)

Note: data are means + SD (minimum and maximum range) for 10 CT scans.
The resolution of each CT image is 512 X 512.

Figure 3 shows the results of computation time in sec-
onds, averaged over multiple tests. When the segmented-
region size was 10 mega voxels (Mvoxels), the computation
time increased in the order of the CUDA, HLSL, quad-core
CPU, and single-core CPU methods. With an increment of 10
Mvoxels in the segmented-region size, the single-core CPU,
quad-core CPU, HLSL, and CUDA methods exhibited an
increment of 14.1 + 0.5 (mean + SD), 3.7 +£ 0.3, 0.4 + 0.1, and
0.1 + 0.0 seconds, respectively, in their computation time.

As the segmented-region size increased, the computation
times of the two CPU methods increased greatly, whereas
those of the HLSL and CUDA methods increased very slowly.
Particularly, the CUDA method required nearly constant
computation time regardless of the segmented-region size.
These results were consistent for all the three synthetic
datasets. The great increment in computation time for the two
CPU methods was expected considering their fundamental
principle of the voxel-by-voxel collection of neighboring
voxels with sufficient similarity. In contrast, the minute or
nearly no increment in computation time for the HLSL
and CUDA methods is attributed to the fact that they have
all the voxels in the volume be read at least once during
each iteration. Thus, they are not affected by the number of
segmented voxels (i.e., the segmented-region size), but they
might be rather affected by the number of whole voxels.

The CUDA method required the least computation time
for all the tested segmented-region sizes in all the three
synthetic datasets. To visually represent the advantage of the
CUDA method (the best GPU method in this study) over
the CPU methods, we calculated the ratio of the computation
time of the CPU method to that of the CUDA method. As all
the three synthetic datasets exhibited a similar graph pattern,
we only plotted the computation time ratio for the cube
dataset (Figure 4). As the segmented-region size increased,
the relative advantage of the CUDA method over the CPU
methods increased, demonstrating a much greater increase
in the computation time ratio for the single-core CPU than
for the quad-core CPU.

3.2. Patient Data Results. The patient data included 10 lung
and 10 colon CT scans (Table 2). Table 3 shows the results of
the computation time in seconds and the number of iterations
for the patient data. As the original SRG algorithm was
not an iterative algorithm, the number of iterations was not
included in the CPU implementations in Table 3. Figure 5
shows volume-rendered images of a segmented lung and
colon from our experiments.

For the lung CT scans, the computation time increased
significantly in the order of the CUDA, HLSL, quad-core
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CPU, and single-core CPU methods (P < 0.01 for all pair-
wise comparisons). For the colon CT scans, the computation
time increased significantly in the order of the CUDA, quad-
core CPU, single-core CPU, and HLSL methods (P < 0.01 for
all pair-wise comparisons).

The HLSL method interestingly showed the worst per-
formance for the colon scans even with its parallelized
computation. The colon scans, compared to the lung scans,
had a smaller segmented-region size (colon versus lung,
7.0 £ 3.1 (mean * SD) versus 13.6 + 1.8) but a greater
number of iterations (337.1 + 98.0 versus 145.1 + 52.6 for the
HLSL method). The single-core and quad-core CPU methods
benefited directly from the smaller segmented-region size of
the colon scans, exhibiting the less computation time for the
colon scans. In contrast, the HLSL method, which is not so
much affected by the segmented-region size as demonstrated
in the synthetic data results, showed the increased iterations
for the colon scans likely due to the structural complexity
of the folding and crumpling colon. The CUDA and HLSL
methods both required much more iterations for the colon
scans than for the lung scans, resulting in the much more
computation time for the colon scans. However, the CUDA
method, which features the writing of multiple mask values
and the avoidance of redundant writings, still exhibited the
best performance for the colon scans as well as for the lung
scans.

4. Discussion

When the segmented-region size was small in the synthetic
data, the computation time increased in the order of the
CUDA, HLSL, quad-core CPU, and single-core CPU meth-
ods. As the segmented-region size increased, the single- and
quad-core CPU methods required dramatically increasing
computation time, whereas the CUDA and HLSL methods
exhibited a very slow increase in computation time. In
particular, the CUDA method exhibited a nearly constant
computation time regardless of the segmented-region size for
the CUDA method. The performance of the original SRG
algorithm is fundamentally affected by the segmented-region
size, which may have been one factor. The CUDA method
showed the best performance for all the tested segmented-
region sizes in all the synthetic datasets. It also performed the
best for the patient datasets of lung and colon CT scans.

Segmentation in lung and colon CT datasets has recently
emerged as an important topic, as both examinations have
rapidly gained support as screening tests in populations.
From a practical viewpoint, it is very challenging to interpret
such examinations of huge volumes in a timely manner.
Therefore, any new technology would be welcomed if it is
helpful in automating any part of the interpreting processes.
The proposed CUDA-based SRG method, which demon-
strated the best performance in our experiments, would be
helpful in improving the performance of such an automated
system. Another practical advantage of the CUDA method
over a CPU method would be that its performance can be
improved even more if it is used in conjunction with the
designation of an ROI (region of interest). As shown in our
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TABLE 3: Results of the computation time and the number of iterations for patient datasets.

(a)

Computation time (s)*

Patient data
CUDA HLSL Quad-core Single-core
Lung 0.6+ 0.1 (222.8 +22.2) 4.5+13 (1451 + 52.6) 8.7 +2.8 (n/a) 19.3 + 2.4 (n/a)
Colon 1.3 + 0.4 (4611 + 189.3) 13.2 + 4.0 (3371 % 98.0) 4.2 +1.8 (n/a) 74 £ 3.9 (n/a)
(b)
Patient data P yalue 4
CUDA versus  CUDA versus HLSL versus HLSL versus Quad-core
CUDA versus . . CPUs versus
Overall HLSL quad-core single-core quad-core single-core sinele-core
CPUs CPUs CPUs CPUs &
CPUs

Lung <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Colon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Note: *data are means + SD of the computation time (mean + SD of the number of iterations) for 10 CT scans.

study results, the performances of the two CPU methods
highly depend on the segmented-region size regardless of
the presence of such an ROI. Thus, the CPU methods would
not benefit from the ROI designation which does not change
the segmented-region size. In contrast, the CUDA method,
the performance of which rather depends on the resolution
of data (i.e, the number of whole voxels), may realize a
substantial practical gain in the computational efficiency via
the ROI designation.

Recent work was done by Pan et al. [29], in which
seeded region growing was implemented using the CUDA
technology. Comparing with Pan et al. [29], our method
designed data structures to maximize the utilization of
CUDA architecture. Their method read an 8-bit word from
the global memory in a single instruction, whereas our
method read a 64-bit word from the global memory in a
single instruction. Due to the limitation of the number of the
available threads, the data size handled by one thread deter-
mines the acceleration performance. Their method processed
only one voxel per one thread, whereas our method processed
eight voxels per one thread. Since the SRG algorithm refers
the information of neighboring voxels, we developed the
data structures to refer the current and neighboring voxels
efficiently, which were concurrently stored in a 64-bit word
data.

A direct comparison of the processing time between their
work [29] and ours is likely unfair, as different graphics cards
were used (i.e., Geforce 8500 GT in their work versus Geforce
GTX285in ours). They segmented the heart, artery, and bone
simultaneously using multiple seed points in an abdomen CT
scan with a resolution of 512 x 512 x 289. For comparison, we
segmented the lung in a lung CT scan with a resolution of
512 x 512 x 332, which had the closest number of slice images
as their work. Considering that the number of slice images
is greater in our experiment than in that of Pan et al. and
the lung has a larger volume than the total volume of the
heart, artery, and bone, the comparison is not favorable to
ours, rather favoring that of Pan et al.. Our mean computation
time was 0.53 s, while theirs was 12.88 s (2.26 s considering the

5.71x GPU performance increase from Geforce 8500 GT to
Geforce GTX 285).

The proposed CUDA-based SRG method has a limitation.
The method requires twice the amount of memory for the
original volume data. It uses two sets of mask volume data
to store the segmentation result. Each mask dataset with 8
bits per voxel amounts to half of the original volume data,
and thus the two datasets requires exactly the same amount of
memory storage for the original volume data. This additional
storage is not likely negligible considering the limited amount
of GPU memory space. However, the use of additional storage
may be unavoidable considering the computational efficiency
gain by the proposed CUDA method.

5. Conclusion

This paper proposed a method of parallelizing the SRG
algorithm using the CUDA technology. The segmentation
performance of the proposed CUDA-based SRG method was
evaluated in comparison with the SRG implementations on
single- and quad-core CPUs and shader language program-
ming. By exploiting the feature of the CUDA technology
of simultaneous writing to multiple mask voxels and by
avoiding redundant writings, the proposed CUDA-based
SRG outperformed the other three methods both for the
synthetic and patient datasets. Considering its incompara-
ble computational efficiency and its advantageous feature
of a nearly constant computation time regardless of the
segmented-region size, the proposed CUDA-based SRG can
be advocated to substantially assist the segmentation during
massive CT screening tests.
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