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Measuring the Validity of
Clustering Validation Datasets

Hyeon Jeon, Michaël Aupetit, DongHwa Shin, Aeri Cho, Seokhyeon Park, and Jinwook Seo

Abstract—Clustering techniques are often validated using benchmark datasets where class labels are used as ground-truth clusters.
However, depending on the datasets, class labels may not align with the actual data clusters, and such misalignment hampers
accurate validation. Therefore, it is essential to evaluate and compare datasets regarding their cluster-label matching (CLM), i.e., how
well their class labels match actual clusters. Internal validation measures (IVMs), like Silhouette, can compare CLM over different
labeling of the same dataset, but are not designed to do so across different datasets. We thus introduce Adjusted IVMs as fast and
reliable methods to evaluate and compare CLM across datasets. We establish four axioms that require validation measures to be
independent of data properties not related to cluster structure (e.g., dimensionality, dataset size). Then, we develop standardized
protocols to convert any IVM to satisfy these axioms, and use these protocols to adjust six widely used IVMs. Quantitative experiments
(1) verify the necessity and effectiveness of our protocols and (2) show that adjusted IVMs outperform the competitors, including
standard IVMs, in accurately evaluating CLM both within and across datasets. We also show that the datasets can be filtered or
improved using our method to form more reliable benchmarks for clustering validation.

Index Terms—Clustering, Clustering Validation, Internal Clustering Validation, External Clustering Validation, Clustering Benchmark

✦

1 INTRODUCTION

Cluster analysis [1] is an essential exploratory task for data
scientists and practitioners in various application domains
[2]–[7]. It commonly relies on unsupervised clustering tech-
niques, that is, machine learning algorithms that partition
data into subsets called groups or clusters. These algo-
rithms maximize between-cluster separation and within-
cluster compactness based on a given distance function [8].

Clustering validation measures [9], [10] or quality mea-
sures [11] are used to evaluate clustering results. They
are categorized as internal measures and external measures
[8]. Internal validation measures (IVM) (e.g., Silhouette
score [12]), also known as relative measures [1], give high
scores to partitions in which data points with high or
low similarities to each other are assigned to the same or
different clusters, respectively. External validation measures
(EVM) [13], [14] (e.g., adjusted mutual information [15])
quantify how well a clustering result matches an externally
given ground truth partition.

Using the classes of a labeled dataset as a ground truth
partition is a typical approach to conduct external validation
[9]. This approach promotes a clustering technique that
precisely distinguishes labeled classes as separated clusters.
The underlying assumption is that the classes of the dataset
align well with the clusters [9], [16], [17] (Figure 1A). We
name it the Cluster-Label Matching (CLM) assumption.

If the CLM of a labeled dataset is accurate, EVMs work as
intended. EVM scores become low only when the clustering
technique fails to capture the clusters represented by the
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classes (Figure 1G). That is, external validation is reliable
only when the CLM assumption is valid.

However, datasets can have poor CLM due to labels
split across clusters (Figure 1B magenta-colored points).
For instance, images of buses and cars both assigned to
the Vehicle class, may form distinct clusters in the im-
age space. Conversely, data sets can also have poor CLM
when they have multiple labels overlap within a single
cluster (Figure 1B magenta- and yellow-colored points).
This happens, for example, when images of visually similar
categories, such as leopards and cheetahs, cause Leopard
and Cheetah classes to overlap in the image space.

With such poor CLM datasets, EVMs become unreliable,
producing low scores regardless of a clustering technique’s
capacity to capture clusters. In fact, a suboptimal clustering
technique may receive a low EVM score because its incorrect
cluster partition is unlikely to align well with the already
inaccurate class label partition (Figure 1H). Conversely, even
a well-performing clustering technique, despite correctly
capturing the “natural” clusters, may also receive a low
EVM score because these accurately identified clusters do
not align well with class labels in bad-CLM datasets (Fig-
ure 1E). In essence, poor CLM undermines EVMs, making
it difficult to differentiate between effective and ineffective
clustering techniques.

It is thus crucial to evaluate CLM—the intrinsic validity
of the ground truth labeled dataset—to compare clustering
techniques on a reliable basis. Not checking CLM before
executing external validation casts doubt on the results
obtained. Moreover, such validation might lead to an erro-
neous conclusion when ranking and comparing clustering
techniques (Section 7.1). Still, external validation is often
conducted without considering the CLM of benchmark
datasets [18]–[21]. Our goal, therefore, is to evaluate the
CLM of labeled datasets to distinguish credible benchmark
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Fig. 1. The illustration of how the degree of Cluster-Label Matching
(CLM) affects the reliability of external validation. An external validation
measure (EVM) evaluates how well the clustering results (markers’
shape) match the ground truth partition, typically given by class labels
(markers’ hue). The CLM is good (A) if the partition formed by the class
labels (fill) matches well the clusters formed by the point distribution
(encoded by position). If CLM is good (A), the EVM between the dataset
labels (A) and clustering results (C, F) gives a reliable evaluation (D,
G) of the clustering technique: high/low EVM (D/G) aligns well with
good/bad clustering (C/F). But if CLM is bad (B), the EVM is always
low (E, H) and unreliable to evaluate whether the clustering is good (C)
or bad (F). We aim to evaluate and compare the CLM across datasets
(I,J,K) having diverse characteristics (e.g., dimension, size, data, and
class distributions) to inform external validation by distinguishing valid
benchmark datasets.

datasets for clustering validation. We moreover aim to in-
form the community to use such datasets to conduct more
reliable external validation.

Yet, evaluating and comparing the CLM of datasets is
a challenging problem. IVMs can be natural candidates for
quantifying CLM since well-clustered class partitions tend
to naturally receive higher IVM scores. However, they are
designed to compare different partitions of a single dataset
(Figure 1C vs. Figure 1F), and not to compare partitions
across different datasets (Figure 1IJK). This limitation arises
because IVMs depend not only on clustering quality but
also on the dataset’s size and dimensionality, and the distri-
butions of data and class labels. Consequently, comparing
IVM scores of different datasets is not reliable, making
them improper for measuring and comparing CLM across
different datasets (Section 6.2; Table 2). This underscores
the need for a more suitable measure of CLM to validate
clustering benchmark datasets.

To address this gap, we design adjusted internal valida-
tion measures (IVMAs) to assess and compare CLM across
datasets. Here are our key contributions:

• We first establish four across-dataset axioms in Section 3,
that form the theoretical basis for designing IVMAs, com-
plementing Ackerman and Ben-David’s within-dataset ax-
ioms [11] already satisfied by standard IVMs.

• We propose adjustment protocols in Section 4 for trans-

forming an IVM into an IVMA that satisfies each across-
dataset axiom.

• In Section 5, we use our protocols to adjust six of the most
widely used IVMs [8] (e.g., Silhouette coefficient [12] and
Calinski-Harabasz index [22]). The resulting IVMAs are
practical ways to quantify and compare CLM both within
and across datasets.

• In Section 6, we conduct an ablation study to verify the
validity and necessity of our new axioms and adjustment
protocols. We also verify the effectiveness of IVMAs in
accurately evaluating and comparing CLM, both within
and between datasets. Finally, a runtime analysis demon-
strates the advantage of IVMAs in terms of scalability.

• Finally, we present two applications of these IVMAs in
Section 7 to demonstrate their benefits for the practition-
ers. We first validate the importance of evaluating the
CLM over benchmark datasets by showing the instability
of external validation when this step is overlooked. By
doing so, we identify the top-CLM benchmark datasets
that practitioners can use with higher confidence for
evaluating clustering techniques. Second, we show that
IVMAs can also be used to correct bad-CLM benchmark
datasets by searching for data subspaces that maximize
IVMAs.

2 BACKGROUNDS AND RELATED WORK

One common way to distinguish good and bad clustering
techniques is to use EVMs. EVMs quantify how much the
resulting clustering matches with a ground truth partition of
a given dataset. For example, adjusted mutual information
[15] measures the agreement of two assignments (clustering
and ground truth partitions) in terms of information gain
corrected for chance effects.

The classes in labeled datasets have been used exten-
sively as ground truth partitions for EVM [9]. However,
despite the potential risk of violating the CLM (Section 1;
Figure 1), no principled procedure has yet been proposed to
evaluate the reliability of such a ground truth. Our research
aims to fill this gap by proposing measures that can evaluate
and compare CLM across datasets. A similar endeavor has
been engaged in the supervised learning community to
quantify datasets’ difficulty for classification tasks [23].

A natural approach is to use classification scores as a
proxy for CLM [24], [25]. This approach is based on the
assumption that the classes of a labeled dataset with good
classification scores would provide reliable ground truth for
EVM. Still, a classifier can hardly distinguish between two
“adjacent” classes forming a single cluster (Figure 1B orange
and magenta points in the bottom left cluster, good class
separation but bad CLM) and two “separated” classes form-
ing distant clusters (Figure 1A blue and magenta clusters,
good CLM). It also cannot distinguish different within-class
structures, such as a class forming a single cluster (Figure 1A
blue class, good CLM) and one made of several distant
clusters (Figure 1B magenta class, bad CLM). In addition,
classifiers require expensive training time (Section 6.4).

A more direct approach is to examine how well the
clustering techniques capture class labels, as well-separated
classes will be easily captured by the techniques (Figure 1D).
However, this approach is also computationally expensive
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(Section 6.4). Moreover, it is not based on principled axioms
independent of any clustering technique, so it is likely to
be biased with respect to a certain type of cluster. Still, we
can approximate ground truth CLM by running multiple
and diverse clustering techniques [26] and aggregating their
EVM scores. For lack of a better option, we use this ensemble
approach to obtain an approximate ground truth in our
experiments to validate our axiom-based solution.

In contrast, IVMs are inexpensive to compute (Sec-
tion 6.4). They also examine cluster structure in more detail,
relying on two criteria, namely compactness (i.e., the pairwise
proximity of data points within a cluster) and separability
(i.e., the degree to which clusters lie apart from one another)
[8], [27]. For example, in Figure 1, an IVM would give a
higher score to clustering partition C than to F. Moreover,
following the axiomatization of clustering by Kleinberg [28],
Ackerman and Ben-David [11] proposed four within-dataset
axioms that give a common ground to IVMs: scale in-
variance, consistency, richness, and isomorphism invariance
(Section 3.1). These axioms set the general requirements that
a function should satisfy to work properly as an IVM.

Nevertheless, IVMs were originally designed to com-
pare and rank different partitions of the same dataset (Fig-
ure 1A-H). Therefore, IVMs are not only affected by cluster
structure but also dependent on the characteristics of the
datasets, such as the number of points, classes, and di-
mensions (Figure 1I-K), which means that they are cannot
properly compare CLM across different datasets. Here, we
propose four additional axioms that IVMs should satisfy
to compare CLM across datasets and derive new adjusted
IVMs satisfying the axioms (i.e., IVMAs). IVMAs play the
role of a proxy of CLM, evaluating the intrinsic validity of a
benchmark dataset for external clustering validation.

3 NEW AXIOMS FOR ADJUSTED IVM
We propose new across-dataset axioms that adjusted IVMs
(i.e., IVMAs) should satisfy to properly evaluate and com-
pare CLM across datasets, complementing the within-
dataset ones of Ackerman and Ben-David [11].

3.1 Within-Dataset Axioms
Ackerman and Ben-David (A&B) introduced within-dataset
axioms [11] that specify the requirements for IVM to prop-
erly evaluate clustering partitions (Appendix A): W1: Scale
Invariance requires measures to be invariant to distance
scaling; W2: Consistency is satisfied by a measure that in-
creases when within-cluster compactness or between-cluster
separability increases; W3: Richness requires measures pos-
sible to give any fixed cluster partition the best score over
the domain by only modifying the distance function; and
W4: Isomorphism Invariance ensures that an IVM does not
depend on the external identity of points (e.g., class labels).

3.2 Across-Dataset Axioms
Within-dataset axioms do not consider the case of com-
paring scores across datasets; rather, they assume that the
dataset is invariant. We propose four additional across-
dataset axioms that a function should satisfy to fairly com-
pare cluster partitions across datasets.

Notations. We begin by defining four fundamental building
blocks of our axioms, using notation identical to that of
A&B:

• A finite domain set X ⊂ D of dimension ∆X , where D
denotes the data space.

• A clustering partition of X as C = {C1, C2, · · · , C|C|},
where ∀i ̸= j, Ci ∩ Cj = ∅ and ∪|C|

i=1Ci = X .
• A distance function δ : D ×D → R, satisfying δ(x, y) ≥
0, δ(x, y) = δ(y, x) and δ(x, y) = 0 if x = y ∀x, y ∈ D.
We do not require the triangle inequality.

• A measure f as a function that takes C,X, δ as input
and returns a real number. Higher f implies a better
clustering.

We extend these notations with:

• X ′ the centroid of X ′, where X ′ ⊂ X .
• Wα a random subsample of the set W (Wα

D
= W ) such

that |Wα|/|W | = α, and the corresponding clustering
partition is noted Cα = {Ciα

}i=1,...,|C|.

Goals and factors at play. A&B’s within-dataset axioms
are based on the assumption that the measures that satisfy
these axioms properly evaluate the quality of a clustering
partition. However, the axioms do not consider that the
measures f could operate on varying C , δ, and X . For
example, isomorphism invariance (W4) assumes fixed X
and δ; consistency (W2) and richness (W3) define how
functions f should react to the change of δ, but do not
consider how δ changes in real terms, affected by various
aspects of X (e.g., dimensionality); scale invariance (W1)
considers such variations, but only in terms of the global
scaling. Thus, the satisfaction of A&B’s axioms is a way to
ensure IVMs focus on measuring clustering quality within a
single dataset but not across datasets.

In contrast, IVMAs shall operate on varying C , δ, and
X . Thus, several aspects of the varying datasets now come
into play, and their influence on IVMA shall be minimized.
The sample size |X| is one of them (Axiom A1), and the
dimension ∆X of the data is another one (Axiom A2).
Moreover, what matters is the matching between natural
clusters and data labels more than the number of clusters
or labels; therefore, we shall reduce the influence of the
number of labels |C| (Axiom A3). Lastly, we need to align
IVMA to a comparable range of values (Axiom A4) across
datasets, in essence capturing all remaining hard-to-control
factors unrelated to clustering quality. We now explain the
new axioms in detail:

Axiom A1: Data-Cardinality Invariance
Invariance of the sample size |X| is ensured if subsampling
all clusters in the same proportion does not affect the IVMA

score. This leads to the first axiom:

A1 – Data-Cardinality Invariance. A measure f satis-
fies data-cardinality invariance if ∀X,∀δ and ∀C over (X, δ),
f(C,X, δ) = f(Cα, Xα, δ) with Xα = ∪|C|

i=1Ciα
∀α ∈]0, 1].

Axiom A2: Shift Invariance
We shall consider that data dimension ∆X varies across
datasets. An important aspect of the dimension called the
concentration of distance phenomenon, which is related to
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the curse of dimensionality, affects the distance measures
involved in IVMA. As the dimension grows, the variance
of the pairwise distance for any data tends to be constant,
while its mean value increases with the dimension [29]–
[31]. Therefore, in high-dimensional spaces, δ will act as
a constant function for any data X , and thus an IVMA f
will generate similar scores for all datasets. To mitigate this
phenomenon, and as a way to reduce the influence of the
dimension, we require that the measure f be shift invariant
[31], [32] so that the shift of the distances (i.e., growth of the
mean) can be canceled out.

A2 – Shift Invariance. A measure f satisfies the shift invariance
if ∀X,∀δ, and ∀C over (X, δ), f(C,X, δ) = f(C,X, δ + β)
∀β > 0, where δ + β is a distance function satisfying (δ +
β)(x, y) = δ(x, y) + β, ∀x, y ∈ X .

Axiom A3: Class-Cardinality Invariance

The number of classes should not affect an IVMA; for
example, two well-clustered classes should get an IVMA

score similar to 10 well-clustered classes. A&B proposed
that the minimum, maximum, and average class-pairwise
aggregations of IVMs form yet other valid IVMs. We follow
this principle as an axiom for IVMA.

A3 – Class-Cardinality Invariance. A measure f satis-
fies class-cardinality invariance if ∀X,∀δ and ∀C over (X, δ),
f(C,X, δ) = aggS⊆C,|S|=2f

′(S,X, δ) where function aggS ∈
{avgS ,minS ,maxS} and f ′ is an IVM.

Axiom A4: Range Invariance

Lastly, we need to ensure that an IVMA takes a common
range of values across datasets. In detail, we want their min-
imum and maximum values to correspond to the datasets
with the worst and the best CLM, respectively, and that
these extrema are aligned across datasets (we set them arbi-
trarily to 0 and 1), as follows:

A4 – Range Invariance. A measure f satisfies range invariance
if ∀X,∀δ, and ∀C over (X, δ), minC f(C,X, δ) = 0 and
maxC f(C,X, δ) = 1.

4 GENERALIZATION PROTOCOLS

We introduce four technical protocols (T1-T4), designed to
generate IVMAs that satisfy the corresponding axioms A1-
A4, respectively.

T1: Approaching Data-Cardinality Invariance (A1)

We cannot guarantee the invariance of a measure for any
subsampling of the data (e.g., very small sample size). How-
ever, we can obtain robustness to random subsampling if
we use consistent estimators of population statistics [33] as
building blocks of the measure. For example, we can use the
mean, the median, or the standard deviation of the points
within a class or the whole dataset or quantities derived
from them, such as the average distance between all points
of two classes.

T2: Achieving Shift Invariance (A2)

T2-a,b: Exponential protocol. Considering a vector of dis-
tances u = (u1 . . . un), we can define a shift-invariant func-
tion by using a ratio of exponential functions:

gj(u) =
euj∑
k e

uk
. (1)

We observe that ∀β ∈ R,

gj(u+ β) =
euj+β∑
k e

uk+β
=

euj∑
k e

uk

eβ

eβ
= gj(u), (2)

hence gj is shift invariant. Thus, the measure f is shift
invariant if it consists of ratios of the exponential distances
(T2-a). Note that this protocol is at the core of the t-SNE loss
function [31]. If a building block is a sum or average of dis-
tances, the exponential should be applied to the average of
distances rather than individuals (T2-b), as the shift occurs
to the average distances [30].

T2-c: Equalizing shifting. The exponential protocol can be
safely applied only if the measure incorporates the distance
between data points within X (Type-1 distance). We do not
know, in general, how the shift of type-1 distances affects
the distances between data points and their centroid (Type-
2), nor do we know how the shift affects the distance be-
tween two centroids (Type-3), even though they are com-
mon building blocks in IVM [8]. Fortunately, if δ is the
square of Euclidean distances (i.e., δ = d2 where d(x, y)
denotes the Euclidean distance between points x and y), we
can prove that the shift of type-1 distances by β results in
the shift of type-2 distances by β/2, and in no shift of type-3
distances, which is stated by the following theorems (proof
in Appendix D.1).

Theorem 1 (Type-2 Shift). ∀X ′ ⊂ X , ∀β > 0, and for any
Euclidean distance functions dL and dH satisfying d2H = d2L+β,∑

x∈X′ d2H(x, c) =
∑

x∈X′ d2L(x, c) + β/2, where c = X ′.

Theorem 2 (Type-3 Shift).. ∀X ′, X ′′ ⊂ X , ∀β > 0, and for
any Euclidean distance functions dL and dH satisfying d2H =
d2L + β, d2H(c′, c′′) = d2L(c

′, c′′), where c′ = X ′ and c′′ = X ′′.

Therefore, if an IVM consists of different types of distances,
we should use δ = d2 and apply the exponential protocol
with the same type of distances for both its numerator and
denominator (T2-c).

T2-d: Recovering Scale Invariance. After applying the ex-
ponential protocol, gj is no more scale-invariant:

∀λ ∈ R, gj(λu) =
eλuj∑
k e

λuk
̸= gj(u), (3)

and so it will not satisfy axiom W1. We can recover scale-
invariance by normalizing each distance ui by a term that
scales with all of the uk together, such as their standard
deviation, σ(u). Now,

gj(λu/σ(λu)) = gj(λu/λσ(u)) = gj(u/σ(u)), (4)

is both shift and scale invariant (T2-d).
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T3: Achieving Class-Cardinality Invariance (A3)

Class-cardinality invariance can be achieved by following
the definition of Axiom A3; thas is, by defining the global
measure as the aggregation of class-pairwise local mea-
sures, fc(C,X, d) = aggS⊆C,|S|=2f(S,X, δ), where agg =
{avg,min,max}.

T4: Achieving Range Invariance (A4)

T4-a,b: Scaling. A common approach to get a unit range for
f is to use min-max scaling fu = (f − fmin)/(fmax − fmin).
However, determining the minimum and maximum values
of f for any data X is nontrivial. Theoretical extrema are
usually computed for edge cases far from realistic X and C .
Wu et al. [14] proposed estimating the worst score over a
given dataset X by the expectation f̂min = Eπ(f(C

π, X, δ))
of f computed over random partitions Cπ of (X, δ) pre-
serving class proportions |Cπ

i | = |Ci|∀i (T4-a), which are
arguably the worst possible clustering partitions of X . In
contrast, it is hard to estimate the maximum achievable
score over X , as this is the very objective of clustering tech-
niques. If the theoretical maximum fmax is known and finite,
we use it by default; otherwise, if fmax → +∞ then the
scaled measure fu → 0,∀f . We propose to use a logistic
function f ′ = 1/(1 + e−k·f ) (T4-b) before applying the
normalization so f ′

max = 1 and f ′
min = f̂ ′

min.

T4-c: Calibrating logistic growth rate k. We can arbitrarily
make a logistic function to pull or push all scores toward
the minimum or maximum value by tuning the growth rate
k. We thus propose calibrating k with datasets with ground
truth CLM scores. Assume a set of labeled datasets X =
{X1, · · · , Xn} with class labels C = {C1, · · · , Cn} and the
corresponding ground truth CLM scores S = {s1, · · · , sn}
where minS = 0 (worst) and maxS = 1 (best). Here, we
can optimize k to make S ′ = {s′1, · · · , s′n} best matches
with S, where s′i = f(Ci, Xi, δ). In practice, we use Bayesian
optimization [34] targeting the R2 score.

We propose using human-driven separability scores as
a proxy for CLM, building upon available human-labeled
datasets acquired from a user study [35] and used in several
works on visual perception of cluster patterns [36], [37], [38].
Each dataset consists of a pair of Gaussian clusters (classes)
with diverse hyperparameters (e.g., covariance, position),
graphically represented as a monochrome scatterplot. The
perceived separability score of each pair of clusters was
obtained by aggregating the judgments of 34 participants of
whether they could see one or more than one cluster in these
plots. The separability score of each dataset is defined as
the proportion of participants who detected more than one
cluster. We used these datasets X and separability scores
S for calibration because they are not biased by a certain
clustering technique or validation measure; they are based
on human perception following a recent research trend in
clustering [36], [39], and the probabilistic scores naturally
range from 0 to 1. However, as the scores are not uniformly
distributed, we bin them and weigh each dataset in pro-
portion to the inverse size of the bin they belong to (see
Appendix B for details).

5 ADJUSTING IVM INTO IVMA

We use the proposed protocols (Section 4) to adjust six base-
line IVMs: Calinski-Harabasz index (CH) [22], Dunn in-
dex (DI) [40], I index (II) [41], Xie-Beni index (XB) [42],
Davies-Bouldin index (DB) [43], and Silhouette coefficient
(SC) [12], into IVMAs that satisfy both within- and across-
dataset axioms. We pick the IVMs from the list of the survey
done by Liu et al. [8]. We select every IVM except the ones
optimized based on the elbow rule (e.g., modified Hubert Γ
statistic [44]) and those that require several clustering results
(e.g., S Dbw index [45]). Our choice covers the most widely
used IVMs that have clear variety in the way of examining
cluster structure.

Here, we explain the adjustment of CH . We selected CH
because it does not satisfy any of the across-dataset axioms,
so that we can demonstrate the application of all protocols
(Section 4). The adjusted CH (CHA) also turned out to be
the best IVMA in our evaluations (Section 6).

5.1 Adjusting the Calinski-Harabasz Index

CH [22] is defined as:

CH(C,X, d2) =
|X| − |C|
|C| − 1

·
∑|C|

i=1 |Ci|d2(ci, c)∑|C|
i=1

∑
x∈Ci

d2(x, ci)
, (5)

where ci = Ci and c = X . A higher value implies a better
CLM. The denominator and numerator measure compact-
ness and separability, respectively. The adjustment proce-
dure is as follows:

Applying T1 (Data-cardinality invariance). Both the de-
nominator and numerator of CH are already robust esti-
mators of population statistics (T1). However, as the term
(|X| − |C|) makes the score grow proportional to the size of
the datasets, we remove the term to eliminate the influence
of data-cardinality, resulting in:

CH1(C,X, d2) =

∑|C|
i=1 |Ci|d2(ci, c)

(|C| − 1)
∑|C|

i=1

∑
x∈Ci

d2(x, ci)
. (6)

Applying T2 (Shift invariance). CH1’s numerator and
denominator consists of type-3 and type-2 distances, respec-
tively. To equalize the shift before applying exponential (T2-
c), we add the sum of the squared distances of the data
points to their centroid as a factor to the numerator, which
does not affect separability or compactness. This leads to:

CH2(C,X, d2) =

∑
x∈X

d2(x, c)

|C|∑
i=1

∑
x∈Ci

d2(x, ci)

·

|C|∑
i=1

|Ci|d2(ci, c)

|C| − 1
. (7)

As the left term is a fraction of the sum of type-2 distances,
we get shift invariance by dividing both the numerator and
the denominator by |X| (i.e., the sum becomes an average;
T2-b), then by applying the exponential normalized by the
standard deviation σd2 of the square distances of the data
points to their centroid (T2-a); i.e., σd2 = std({d2(x, c)|x ∈
X}). The right term does not need an exponential protocol
as type-3 distances do not shift as the dimension grows.
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We still divide the term with |X| and σd2 to ensure data-
cardinality and scale invariance, respectively. This leads to:

CH3(C,X, d2) =
e
∑

x∈X
d2(x,c)
σ
d2

·|X|

e
∑|C|

i=1

∑
x∈Ci

d2(x,ci)

σ
d2

·|X|

·

×
∑|C|

i=1 |Ci|d2(ci, c)
σd2 · |X| · (|C| − 1)

.

(8)

Applying T4 (Range invariance). We apply min-max scal-
ing to make the measure range invariant.

As max(CH3) → +∞, we transform it through a logistic
function (T4-b), resulting in:

CH4 = 1/(1 + e−k·CH3), ∴ CH4max → 1. (9)

We then estimate the worst score CH4min (T4-a) as the av-
erage CH4 score computed over T Monte-Carlo simulations
with random clustering partitions Cπ :

CH4min =
1

T

T∑
t=1

CH4(C
πt , X, d2), (10)

.
We then get:

CH5 = (CH4 − CH4min)/(CH4max − CH4min), (11)

where we set the logistic growth rate k by calibrating the
CH5 scores (S ′) with human-judgment scores (S) (T4-c).

Applying T3 (Class-cardinality invariance). Lastly, we make
our measure satisfy class-cardinality invariance (Axiom A3)
by averaging class-pairwise scores (T3), which finally deter-
mines the adjusted Calinski-Harabasz index:

CHA(C,X, d2) =
1(|C|
2

) ∑
S⊆C,|S|=2

CH5(S,X, d2). (12)

Unlike CH , which misses all across-dataset axioms, CHA

satisfies all of them (Refer to Appendix D for the proofs).

Removing Monte-Carlo simulations. We can reduce the
computing time of CHA by removing Monte-Carlo Simula-
tions for estimating CH4min. Indeed, as randomly permut-
ing class labels make all Ci ∈ C satisfy Ci

D
= X , we can

assume c ≃ ci ∀ci. Therefore, CH3(C
π, X, d2) ≃ 0 as it

contains d2(ci, c) ≃ 0 in the second term, which leads to:

CH4min = Eπ(CH4(C
π, X, d2))

= Eπ(1/2) = 1/2.
(13)

This approximation also makes CHA deterministic.

Computational complexity. Table 1 presents the time com-
plexities of the IVMs. Since the complexity of CHA is linear
with respect to all parameters, where the only additional
parameter compared to CH is |C|, the measure scales effi-
ciently to datasets with large sizes and high dimensionality
(Section 6.4).

TABLE 1
Time complexity of CH, CHA and their variants generated by applying

our protocols (Section 5). The simulation refers to T runs of
Monte-Carlo experiments used to compute CH4min Equation 10).

IVMs in the first two rows do not depend on Monte-Carlo simulations.

IVMs w/ simulation w/o simulation

CH,CH1, CH2, CH3, CH4 O(|X|∆X)
CH4max O(1)
CH4min O(T |X|∆X) O(|X|∆X)
CH5 O(T |X|∆X) O(|X|∆X)
CHA O(T |X|∆X |C|) O(|X|∆X |C|)

5.2 Adjusting the Remaining IVMs
The adjustment processes of the remaining IVMs are not
significantly different from those of CH . As DI misses all
across-dataset axioms, it goes through all protocols like CH .
II , XB, and DB require the shift (T2), range (T4), and
class-cardinality (T3) invariance protocols as they are al-
ready data-cardinality invariant (A1). After passing through
these protocols, II and XB become identical (i.e., IIA =
XBA). For SC, only shift and class-cardinality invariance
protocols are required, as data-cardinality and range invari-
ance (A4) are already satisfied. We thus obtain five adjusted
IVMs: CHA, DIA, {II,XB}A, DBA, and SCA. Please refer
to Appendix C for detailed adjustment processes.

6 EVALUATION

We conduct four experiments to evaluate our protocols (Sec-
tion 4) and IVMAs. The first experiment evaluates the effec-
tiveness of each individual protocol by an ablation study
(Section 6.1). The second and third experiments investigate
how well IVMA correlates with the ground truth CLM across
(Section 6.2) and within (Section 6.3) datasets, comparing
their performance to competitors like standard IVMs and
supervised classifiers (Section 2). Finally, we investigate the
runtime of IVMAs and competitors in quantifying the CLM
of datasets (Section 6.4).

6.1 Ablation Study on the Protocols
Objectives and design. We want to evaluate our protocols
in making IVMAs to satisfy the new axioms. For datasets, we
consider the ones that we used to fit the logistic growth rate
k (Section 4, T4-c), which consists of two bivariate Gaus-
sian clusters (as classes) with various levels of CLM [35],
to which we add noisy dimensions. For each IVMA ZA,
we consider its variants Zv made by switching on and off
the protocols (Zv ∈ {ZP |P ∈ 2TZ} where TZ is the set
of protocols switched for Z). In the case of CH and DI ,
we make eight variants by switching data-cardinality (T1;
D), shift invariance (T2; S), and range invariance (T4; R)
protocols (TCH = TDI = {T1, T2, T4} = {D,S,R}), and
for II , XB, DB, we switch T2 and T4 (TII = TXB = TDB =
{T2, T4} = {S,R}), resulting in four variants. For SC, only
T2 is turned on and off, which leads to two variants (TSC =
{T2} = {S}). The effect of the class-cardinality invariance
protocol (T3) is not evaluated because the ground truth syn-
thetic datasets [35] contain only two classes. We control
the cardinality (A1) and dimension (A2) of the datasets to
evaluate how sensitive the variants are to variations of these
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Fig. 2. Results of the ablation study (Section 6.1). Top: data-cardinality test, bottom: dimensionality test. Scatterplots (a-d, f-i) show how the SMAPE
varies between IVMs and their variants in average, where each dot corresponds to a single IVM variant Zv . The shape and the color of the dots
correspond to Z and v, respectively, and x and y coordinates represent the error made by Z (before applying the protocols) and Zv (after applying
the protocols), respectively. If a dot is located in the lower-right half of the scatterplot, it means that the protocol-based variant Zv produces less
error than Z. Note that II and XB are horizontally aligned as their adjusted versions are identical. The first three columns show the effect of each
protocol and its variants, and the fourth column shows the variant in which all possible protocols are applied (Zv = ZA). Bar plots (e, j) show the
error reduction rate made by the protocols and their combinations averaged over all the IVMs; the higher the bar, the better. Notice that ADJ shows
lower error reduction compared to other combinations because not all IVMs benefit from the entire set of protocols. The table below the bar plots
indicates what combinations of protocols are applied (O) to each IVM or not (X).

conditions (the lower, the better). We do not control class-
cardinality (A3) as the number of classes (which is 2) is
imposed by the available data. Range invariance (A4) is not
controlled either, as it is imposed by the min-max protocol
(T4) and is not a characteristic of the datasets.

Datasets. We use 1,000 base datasets {X1 . . . X1000}, each
consisting of |X| = 1, 000 points sampled from two Gaus-
sian clusters (|C| = 2) within the 2D space and augmented
with 98 noisy dimensions (∆ = 100). We control the eight
independent parameters (ip) of the Gaussians: two covari-
ance matrices (3 ip each), class proportions (1 ip), and the
distance between Gaussian means (1 ip), following previ-
ous studies [35], [36]. New to this work, we add Gaussian
noise along the supplementary dimensions, to each cluster-
generated data, with mean 0 and variance equal to the min-
imum span of that cluster’s covariance. We generate any
dataset Xi,t by specifying a triplet (Xi, Nt,∆t) with Xi

a base dataset, Nt the number of data randomly sampled
from Xi preserving cluster proportions, and ∆t its dimen-
sion where the first two dimensions always correspond to
the 2D cluster space. Sensitivity to data-cardinality (A1):
(Figure 2 top) For each of the 1,000 base data Xi, we gener-
ated 11 datasets Xi,t = (Xi, Nt,∆t)i∈[1...1000],t∈[0...10], with
the controlled data cardinality set to Nt = 50t + 500 and
∆t drawn uniformly at random from [2, . . . , 100]. Sensitiv-
ity to dimensionality (A2): (Figure 2 bottom) For each of
the 1000 base data Xi, we generated 11 datasets Xi,t =
(Xi, Nt,∆t)i∈[1...1000],t∈[0...10], with Nt drawn uniformly at
random from [500, . . . , 1000] and the controlled dimension

set to ∆0 = 2 or ∆t = 10t,∀t > 0.

Measurements. We quantify the extent to which each
variant of a score changes due to the feature alteration of
base datasets. Formally, for each variant Zv , we evaluate the
matching between a pair (a, b) of values of the controlled
factor t (e.g. (∆a,∆b) = (10, 30)) across all the 1,000 base
datasets using:

Sk∈{1,...,1000}
(
wk

(
Zv(Ck, Xk,a, d)−M

)
,

wk

(
Zv(Ck, Xk,b, d)−M

))
.

(14)

where S is the symmetric mean absolute percentage error
(SMAPE) [46], which is defined as

Sk∈K(Fk, Gk) =

∑
k∈K |Fk −Gk|∑

k∈K(|Fk|+ |Gk|)
(15)

(0 best, 1 worst), and M is the overall minimum empirical
score across all base datasets:

M = min
(

min
k∈[1...1000]

Zv(Ck, Xk,a, d),

min
k∈[1...1000]

Zv(Ck, Xk,b, d)
)
.

(16)

Note that Ck is the class label of Xk and wk is the weight
of Xk to mitigate the distribution imbalance, which is also
used to adjust the growth rate in the range invariance
protocol (T4-c; Appendix B). We adapt SMAPE to compare
measures with different ranges equally and align scores to
0 by subtracting M , as SMAPE can be over-forecasted by
shifting Fk and Gk to the positive side [47].
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Results and discussions. Figure 2 shows that the IVMs
without applying our technical protocols fail to produce
consistent scores across dimensions and data cardinality,
whereas they succeed when satisfying the axioms. The re-
sults demonstrate the superiority of our adjusted IVMs and
the adjustment process.

All three protocols substantially contribute to achieving
the axioms. The scatterplots (a-d, f-i) depict how SMAPE
along the pairs of the controlled factor (data-cardinality, di-
mensionality) is changed between IVMs and their variants
in average, while the bar plots (e, j) show the average error
reduction made by the protocols and their combinations.
The bar graphs indicate that the data-cardinality invariance
protocol (T1; D) alone works as expected; it reduces the
error by about 70% in the data-cardinality test (bar D in
e) and about 30% in the dimensionality test (bar D in j). The
range invariance protocol (T4; R) also plays an important
role in making measures less sensitive to varying factors,
reducing the errors by about 40% and 55% alone for the
data-cardinality (bar R in e) and dimensionality (bar R in j)
tests, respectively. Unexpectedly, the shift invariance proto-
col (T2; S) alone does not reduce error; in both tests, there
exists a case in which the error increases after applying T2
(b, α; g, βγ). However, the error generally reduces when
we apply the shift invariance protocol together with data-
cardinality or range invariance protocols (DS, RS, DRS bars
in e, j). We interpret that the shift invariance protocol alone
does not make apparent enhancement as the exponential
protocol (T4-a,b) amplifies errors that are not yet reduced
by either data-cardinality or range invariance protocols; ap-
plying other protocols reduces such errors and thus reveals
the benefit of the shift invariance protocol.

We find that interplays exist not only for the shift in-
variance protocol and generally provide positive effects. In
the dimensionality test, for example, both the shift invari-
ance protocol and the data-cardinality invariance protocol
perform better when they are combined (DS) than alone (D,
S). The combination of all protocols (DRS) (red dots in e-d
and f-i; DRS bar in e, j) also consistently shows good perfor-
mance in making measures less sensitive to the change of
dimensionality and data-cardinality. Meanwhile, applying
all possible protocols (IVMA; denoted as ADJ) does not show
better performance than most of the other combinations.
This is possibly because some IVMs do not fully benefit from
the interplay of all protocols (table on the bottom right). For
example, for SC, only the shift invariance protocol, which
shows a negative effect without other protocols, is applied.
SCA thus fails to reduce errors, compared to SC (i, ω). Still,
applying all possible protocols generally makes IVM less
sensitive to cardinality and dimension (d, i), which confirms
the importance of our overall adjustment procedures (i.e.,
protocols) and their underlying axioms. Exploring and in-
terpreting the interplays between the protocols and specific
IVMs in more detail would be interesting for future work.

6.2 Across-Dataset Rank Correlation Analysis

Objectives and design. Five IVMA (CHA, DIA, {II,XB}A,
DBA, and SCA) are assessed against competitors (IVMs
and classifiers) for estimating the CLM ranking of labeled
datasets. We approximate a ground truth (GT) CLM ranking

of labeled datasets using multiple clustering techniques. We
then compare the rankings made by all competitors to the
GT using Spearman’s rank correlation.

Datasets. We collect 96 publicly available benchmark la-
beled datasets from various sources (e.g., UCI ML repository
[48] and Kaggle [49]), with diverse numbers of data points,
class labels, cluster patterns (presumably), and dimension-
ality (refer to Appendix G).

Approximating the GT CLM. For the lack of definite GT
clusters in multidimensional real datasets, we use the max-
imum EVM score achieved by nine various clustering tech-
niques (see below) on a labeled dataset as an approximation
of the GT CLM score for that dataset. These GT scores are
used to obtain the GT-ranking of all data sets. This scheme
relies on the fact that high EVM implies good CLM (Sec-
tion 1; Figure 1 A and D). We use Bayesian optimization
[34] to find the best hyperparameter setting for each clus-
tering technique. We obtain the GT-ranking based on the
following four EVMs: adjusted rand index (arand) [50], ad-
justed mutual information (ami) [15], v-measure (vm) [51],
and normalized mutual information (nmi) [52] with geo-
metric mean. We select these measures because they are
“normalized” or “adjusted” so that their scores can be com-
pared across datasets [14], and also widely used in literature
[21], [53]–[55]. For clustering techniques, we use HDBSCAN
[56], DBSCAN [57], K-Means [58], [59], K-Medoids [60], X-
Means [61], Birch [62], and single, average, and complete
variants of Agglomerative clustering [63] (Appendix F).

Competitors. We compare IVMAs, IVMs, and classifiers,
which are natural competitors in measuring CLM (Section 2),
to the GT-ranking. For classifiers, we use Support Vector
Machine (SVM), k-Nearest Neighbors (kNN), Multilayer Per-
ceptron (MLP), Naive Bayesian Networks (NB), Random
Forest (RF), Logistic Regression (LR), Linear Discriminant
Analysis (LDA), following Rodrı́guez et al. [25]. We also
use XGBoost (XGB), an advanced classifier based on tree
boosting [64]. We use XGBoost as it adapts well regardless of
the datasets’ format [64], [65], thus being suitable to all the
96 datasets composed of tabular, image, and text datasets.
XGBoost also outperforms recent deep-learning-based mod-
els in classifying tabular datasets [66], a preponderant type
among our datasets. Finally, we test the ensemble of clas-
sifiers. We measure the classification score of a given la-
beled dataset using five-fold cross-validation and Bayesian
optimization [34] to ensure the fairness of the evaluation.
The accuracy in predicting class labels is averaged over the
five validation sets to get a proxy of the CLM score for that
dataset. For the ensemble, we get the proxy as the highest
accuracy score among the eight classifiers for each dataset
independently [25].

Results and discussions. Table 2 shows that for every
EVM, IVMAs outperform the competitors; first (***), second
(**), and third (*) places are all part of the IVMA category.
IVMAs achieve about 17% (DB) to 81% (DI) of perfor-
mance improvement, compared with their corresponding
IVMs (average: 48%), and have strong (light-red cells) or
very strong (red cells) correlation with GT-ranking according
to Prion et al.’s criteria [67]. These results show that the
adjustment procedure (T1-T4) relying on the new axioms
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TABLE 2
The results of across-dataset rank correlation analysis (Section 6.2).

The numbers are the rank correlations between the approximated
ground truth CLM ranking based on nine clustering techniques and the

estimated CLM ranking obtained by IVMA, IVMs, and classifiers.

Ground truth ranking made by EVMs
ami arand vm nmi

C
la

ss
ifi

er
s

NB .4126 .5276 .3157 .3130
MLP .4405 .5386 .3600 .3761

LR .4456 .5382 .3666 .3873
XGB .4543 .5247 .3373 .3377
kNN .4876 .5810 .3974 .4094

RF .4893 .5741 .3991 .3889
LDA .4999 .5726 .3945 .3606
SVM .5427 .6235 .4625 .4827

Ensemble .5536 .6162 .4486 .4531

IV
M

CH .5923 .6222 .4487 .3810
DI .4026 .3534 .5366 .5979
II .5668 .5957 .6086 .6454

XB .6201 .7019 .4934 .4446
DB .7091 .7513 .5719 .5015
SC .5648 .6800 .4549 .4208

IV
M

A

CHA
∗∗.8714 ∗∗.8472 ∗∗∗.8300 ∗∗∗.7836

DIA .7293 .7177 .7504 .7427
{II,XB}A ∗.8463 ∗.8442 ∗.8060 ∗∗.7818

DBA .8315 .8111 .7856 .7436
SCA

∗∗∗.8955 ∗∗∗.8769 ∗∗.8217 ∗.7733

(1) Every result was validated to be statistically significant
(p < .001) by Spearman’s rank correlation test.

(2) ∗∗∗ / ∗∗ / ∗: 1st- / 2nd- / 3rd-highest scores for each EVM
(3) ■ / ■: very strong (> 0.8) / strong (> 0.6) correlation [67]

0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88
Five-fold Cross Validation Accuracy

LR
NB

MLP
kNN
SVM
LDA

RF
XGB
Ens.

Fig. 3. The cross-validation accuracy of classifiers in classifying classes
in 96 labeled datasets. The classifiers are ordered based on the mean
accuracy. Error bars indicate 95% confidence interval.

(A1-A4), is beneficial to all IVMs, systematically increasing
their correlation with the GT-ranking. Hence, IVMAs are the
most suitable measure to compare and rank datasets based
on their CLM. Within the IVMAs, CHA and SCA show the
best performances, with a slight advantage for CHA (first
place for both vm and nmi, and runner-up for both ami and
arand).

In contrast, as expected, supervised classifiers fall behind
the IVMs and IVMAs, indicating that they should not be re-
lied upon for predicting CLMs. A notable finding is the most
advanced model, XGB, shows relatively poor performance
in estimating CLM compared to classical models such as
SVM, kNN, and LDA; even an ensemble of classifiers falls
behind SVM in terms of arand, vm, and nmi (Table 2). This
is because XGB and ensemble classifiers effectively discrim-
inate classes regardless of whether they are well-separated

TABLE 3
The results of within-dataset rank correlation analysis (Section 6.3). We

compared the pairs of rankings obtained by IVM and IVMA, with the
ground truth noisy labels ranking (NR) on the 96 collected datasets.

IVM IVM vs. IVMA NR vs. IVM NR vs. IVMA

CH .848± .263 .876± .296 .879± .277
DI .253± .429 .451± .335 .381± .727
II .825± .296 .857± .284 .881± .307

XB .820± .308 .832± .341 .881± .307
DB .855± .257 .884± .268 .876± .294
SC .515± .574 .530± .601 .878± .322

■ / ■ : very strong (> 0.8) / strong (> 0.6)
correlation [67]

by a large margin or not in the data space (Figure 3 gray
and yellow points), leading them to classify most datasets
as having similarly good CLM. This finding indicates that
improving classification accuracy does not necessarily help
achieve better CLM measurement, further emphasizing the
significance of our contribution.

6.3 Within-Dataset Rank Correlation Analysis
Objectives and design. We want to evaluate the IVMA’s
ability to evaluate and compare CLM within a dataset, which
is the original purpose of an IVM. For this purpose, we
generate several noisy label variants of each dataset and
compare how the scores achieved by IVMs and their ad-
justed counterparts are correlated with the ground truth
noisy label ranking (NR). Assume a set of datasets X =
{Xi|i = 1, · · · , n} and their corresponding labels {Cj |j =
1, · · · , n}. For each dataset (Xk, Ck), we run the following
process. First, we generate 11 noisy label variants of each
dataset {Ck,l|l = 0, · · · , 10} by randomly shuffling l · 10%
of their labels. The l-th noisy label dataset is authoritatively
ranked at the (11 − l)-th place of the NR (i.e., the larger
the proportion l of shuffled labels is, the lower the expected
CLM). Then, for each IVM Z ∈ {CH,DI, II,XB,DB, SC}
and its corresponding IVMA (i.e., ZA), we compute the CLM
ranking of these noisy label datasets based on Z(Ck,l, Xk, δ)
and ZA(Ck,l, Xk, δ), respectively. We examine how the rank-
ing generated by IVMs and IVMAs are similar to NR using
Spearman’s rank correlation. We also check the rank corre-
lation between the rankings from IVMs and IVMAs.

Datasets. For X , we use the 96 labeled datasets from Sec-
tion 6.2.

Results and discussions. As shown in Table 3, every IVMA

has a very strong rank correlation (> 0.8) with both NR
and IVM for every case except for DIA. The IVMAs showed
equal (CH , DI , II , XB, DB) or better (SC) performance
in estimating the CLM within a dataset. We also see that
the discrepancy between IVM and IVMA rankings follows
the one between IVM and GT noisy labels ranking. Such
results verify the effectiveness of our protocols and IVMAs
in precisely measuring CLM within a dataset.

6.4 Runtime Analysis
Objectives and design. We compare the runtime of the
approaches explored in Section 6.2 to estimate the CLM of 96
labeled datasets. For classifiers and the clustering ensemble,
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Fig. 4. (a) Distribution of pairwise rank stability for bottom-1/3 (blue; P−), entire (orange; P∗), and top-1/3 (green; P+) subsets of 96 labeled
datasets based on the CLM score computed by CHA. (b) Rankings of clustering techniques for each set; rankings are not stable and can change
dramatically if we use low-quality datasets ((a) blue and orange bars). All rankings are based on ami averaged over each subset. Using the top-
ranked datasets leads to more stable and reliable rankings ((a) green bar).

8.463 ! 10-4 (× 0.1343)

1.007 ! 10-3 (× 0.1598)

1.236 ! 10-3 (× 0.1961)

3.422 ! 10-3 (× 0.5429)

1.600 ! 10-2 (× 2.5381)

2.619 ! 10-2 (× 4.1563)

6.302 ! 10-3 (× 1.0000)

6.761 ! 10-3 (× 1.0728)
7.142 ! 10-3 (× 1.1331)

1.689 ! 10-1 (× 26.803)

6.650 ! 10-1 (× 105.51)

5.853 (× 928.74)

6.651 (× 1055.4)

8.008 (× 1270.7)

10.53 (× 1671.4)

18.68 (× 2964.5)

63.64 (× 10098)

73.36 (× 11641)
624.1 (× 99029)

812.1 (× 128859)

172.1 (× 27305)

Fig. 5. The runtime of the IVM (blue), IVMA (green), classifiers (red),
and the clustering ensemble (Ens.; yellow) in computing the CLM of
96 datasets. The numbers next to each box depict the median runtime
of the corresponding measure (left) and the relative time compared to
{II,XB}A, the fastest IVMA (e.g., CHA is 1.07 times slower than
{II,XB}A).

we measure the time of the entire optimization (Section 6.2).
See Appendix F for experimental settings, including the
apparatus we use.

Results and discussion. As a result (Figure 5), IVMAs
are up to one order of magnitude slower than XB, the
fastest IVM. However, they are up to four orders of magni-
tude (×10, 000) faster than the competitors like clustering
ensemble used to estimate ground truth CLM in Section 6.2.
This verifies that most IVMAs, among which is CHA, show
an excellent tradeoff between accuracy and speed. Despite
SCA being as accurate as CHA (Section 6.2), it is two orders
of magnitude slower (×0.01), making CHA the best IVMA to
use in practice.

7 APPLICATIONS

We present two applications of IVMAs. First, we show that
evaluating the CLM of benchmark datasets beforehand and
using only those with the highest CLM scores enhances the
stability and robustness of external validation and ranking
of clustering techniques (Section 7.1). We also show that
IVMAs can be leveraged to improve the CLM of benchmark
datasets (Section 7.2).

(a) (b)
(high EVM)

(low EVM)

bottom-1/3 top-1/3

Fig. 6. All (gray points) and best (red points) ami scores of GT clustering
techniques for the 96 benchmark datasets ranked by CH (left) and CHA

(right). The correlation with ground truth is clearly better for the adjusted
index (Table 2). The top-1/3 datasets (P+) in terms of CHA (right)
are the most reliable datasets to use to evaluate and compare clustering
techniques using EVMs (Section 7.1).

7.1 Ranking Benchmark Datasets for Reliable EVM

Objectives and design. We want to demonstrate the impor-
tance of evaluating the CLM of benchmark datasets prior
to conducting the external validation. Here, we consider
the entire set of 96 labeled datasets (P∗), and also the
top-1/3 (P+) and bottom-1/3 (P−) datasets (Figure 6)
based on their CHA ranking. We consider simulating the
situation whereby a data scientist would arbitrarily choose
10 benchmark datasets (B) among the datasets at hand for
the task T of ranking clustering techniques according to EVMB,
the average EVM over B. For each P ∈ {P+,P∗,P−},
we simulate 100 times picking B at random among P . For
each P , we measure the pairwise rank stability PB(A,B) =
max(1 − p, p) of clustering techniques A and B over B by
counting the proportion p of cases amiB(A) > amiB(B).

Hypothesis. We expect that conducting T on any sub-
set of good-CLM datasets will provide similar rank-
ings (Figure 1A), where pairwise ranks remain stable
(∀(A,B), PB(A,B) ≈ 1), whereas conducting T using bad-
CLM datasets will lead to arbitrary and unstable rankings
(∀(A,B), PB(A,B) spreads over [0.5, 1]) (Figure 1BEH).

Results and discussion. As depicted in Figure 4a, picking
datasets from P+ provides more stable rankings of cluster-
ing techniques, compared with P− and P∗, which validates
our hypothesis. Moreover, we find that the rankings of tech-
niques made by amiP+ , amiP∗ , and amiP− are drastically
different (Figure 4b; e.g., DBSCAN is in first place with P+,
but in eighth place with P∗ or P−). Still, some datasets
within P− (e.g., Spambase and Hepatitis [48]) were used
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0.0 0.2 0.4 0.6 0.8 1.0
CLM

Initial

Improved

(a)

0.6 0.7 0.8 0.9 1.0
Pairwise Rank Stability

initial

improved

(b)

100 101 102 103

Time (s)

(c)

Fig. 7. (a) A comparison of the CLM of 96 labeled datasets before
(initial) and after (improved) applying our algorithm that uses CHA to
enhance CLM (Section 7.2). (b) A comparison of rank stability of EVM
using the initial and improved dataset. (c) The runtime of the algorithm.
The results confirm that IVMAs can enhance the reliability of EVM
benchmark datasets within a reasonable time, lower than a minute for
most datasets.

for external validation in previous studies [18], [19] without
CLM evaluation, casting doubt on their conclusions and
showing that this issue shall gain more attention in the
clustering community.

7.2 Improving the CLM of Benchmark Datasets
Objectives and design. While datasets with good CLM lead
to more reliable EVM (Section 7.1), there is a limited number
of such datasets. We thus propose to improve the CLM
of existing datasets to enhance diversity and robustness in
executing EVM. As a proof-of-concept, we show that IVMAs
can be used to improve the CLM of labeled datasets by
implementing a feature selection algorithm that finds a sub-
space of a given dataset that maximizes IVMA scores. For-
mally, given X , C , δ, and IVMA f , the algorithm finds the
binary weight vector w∗ ∈ {0, 1}|X| that satisfies:

w∗ = argmax
w∈{0,1}|X|

f(C,w ·X, δ), (17)

where · denotes the column-wise weight product:

w ·X = (wT ∗ 1)⊙X, (18)

where ⊙ denotes the Hadamard product and ∗ represents a
standard matrix product. The algorithm returns the column-
filtered data X∗ = w∗ · X as output. We generate 1,000
random weight vectors w and pick the one that maximizes
f , while using CHA as f . We run the algorithm for each of
the 96 labeled datasets (P∗) and compare the CLM of the
original datasets to their optimally-filtered counterparts. We
also repeat the rank stability experiment (Section 7.1) using
the improved datasets. We evaluate how the improved set
differs from the original set in terms of rank stability. Finally,
we record the runtime of the algorithm to check whether the
improvement is achieved in a reasonable time.

Results and discussions. As illustrated in Figure 7a, there is
a substantial overall increase in the CLM of datasets, which
confirms the effectiveness of IVMAs in improving CLM. The
improved dataset also outperformed the original datasets
in terms of rank stability (Figure 7b), which shows that

the improved dataset substantially enhances the reliability
of EVM. We also find that the algorithm completes in less
than 20 seconds on average (Figure 7c), and takes less than
an hour even for the largest dataset. In summary, utiliz-
ing IVMA allows for readily generating reliable benchmark
datasets for EVM within a practical time frame.

8 DISCUSSIONS

8.1 Benefits of Adjusted IVMs

Utilizing an IVMA to estimate the CLM of a dataset dras-
tically reduces the runtime by four orders of magnitude com-
pared to the clustering ensemble (Section 6.4); this trans-
lates to a one-year CLM computation being shortened to
just 53 minutes. Given this computational efficiency, IVMAs
can be used to improve the CLM of labeled datasets by
selecting their dimensions, even with a naive and costly
random search (Section 7.2). Such improvement enables ap-
plications that require real-time measurement of CLM. For
example, it is now possible to estimate the CLM quality on
the fly for streaming data without resorting to distributed
computing or approximate solutions. We can also compute
the CLM of very large datasets, e.g., image or text data in
their transformer [68] space during the training phase, to
evaluate the quality of this representation at each iteration
or in each layer [69], yet a task impracticable with clustering
ensembles.

8.2 Consistency, Soundness, and Completeness of the
Axioms

We discuss the consistency, soundness, and completeness of
the extended axioms (within- and across-dataset axioms),
following A&B [11]. We remind the definition of these three
characteristics: (1) Consistency: the set of axioms is consis-
tent if at least one ideal object (i.e., IVMA) satisfies all of
them, which means that there is no contradiction between
the axioms. We use the same terminology with W2 (con-
sistency of IVM), but with a different meaning (consistency
of axioms). (2) Soundness: the set of axioms is sound if
every object existing in the target group (i.e., every IVMA)
satisfies all the axioms. (3) Completeness: the set of axioms
is complete if any object not included in the target group
(i.e., non-IVMA) fails at least one axiom. We discuss them
for IVMAs:

Consistency. The existence of five IVMAs that satisfy all
within- and across-dataset axioms (Appendix D) validates
their consistency.

Soundness. Soundness cannot be proven as we lack a clear
definition that differentiates IVMAs and non-IVMAs. How-
ever, if we define IVMA as the set of measures that can
be adjusted from any IVM, the axioms are sound as our
technical protocols guarantee that all adjusted measures sat-
isfy or approach the axioms by design. We suggest both
defining a valid IVMA as a “function that satisfies all within-
dataset and across-dataset axioms” and using the axioms as
guidelines to adjust other IVMs or to design new IVMA,
thereby preserving the soundness of all the axioms.

Completeness. Our extended axioms are more complete
than the within-dataset axioms in terms of defining IVMA,
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given that standard IVMs do not meet the new across-dataset
axioms. The across-dataset rank correlation analysis (Sec-
tion 6.2) empirically quantifies and validates this increased
completeness. However, it remains uncertain if our axioms
cover every aspect that can vary across datasets. There might
be a function that fulfills all axioms but is not a valid IVMA.
Searching for such a function and making the axioms more
complete will be an interesting avenue for future work.

9 CONCLUSION

In this research, we provide a grounded way to evaluate the
validity of labeled datasets used as benchmarks for external
clustering validation. We propose doing so by measuring
their level of cluster-label matching (CLM). We propose new
across-dataset axioms and technical protocols to generate
measures that satisfy the axioms. We use these protocols to
design five adjusted internal validation measures (IVMAs),
generalizing standard IVMs, to estimate the CLM of bench-
mark labeled datasets and rank them accordingly. A series of
experiments confirm IVMAs’ accuracy, scalability, and prac-
tical effectiveness in supporting reliable external clustering
validation. As the primary practical outcome of this work,
the 96 datasets ranked by CLM estimated by the proposed
IVMAs measures are available at github.com/hj-n/labeled-
datasets for use by practitioners to generate more trustwor-
thy comparative evaluations of clustering techniques.

As future work, we would like to explore other uses
of IVMA and design new axioms to build better clustering
benchmarks. For example, designing IVMAs that consider
non-globular and hierarchical clusters would be an inter-
esting path to explore. Developing better optimization tech-
niques for maximizing the CLM of benchmark datasets is
another path worthy of further study. Finally, given the high
scalability of IVMAs, we envision using these CLM mea-
sures to compare cluster structures of labeled data across
different latent spaces, like in the layers of foundational
models for exploring concept representations during pre-
training or fine-tuning.

The datasets and code are available at github.com/hj-
n/labeled-datasets and github.com/hj-n /clm, respectively.
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