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Measuring and Explaining the Inter-Cluster Reliability
of Multidimensional Projections

Hyeon Jeon, Hyung-Kwon Ko, Jaemin Jo, Youngtaek Kim, and Jinwook Seo

Abstract— We propose Steadiness and Cohesiveness, two novel metrics to measure the inter-cluster reliability of multidimensional
projection (MDP), specifically how well the inter-cluster structures are preserved between the original high-dimensional space and the
low-dimensional projection space. Measuring inter-cluster reliability is crucial as it directly affects how well inter-cluster tasks (e.g.,
identifying cluster relationships in the original space from a projected view) can be conducted; however, despite the importance of
inter-cluster tasks, we found that previous metrics, such as Trustworthiness and Continuity, fail to measure inter-cluster reliability. Our
metrics consider two aspects of the inter-cluster reliability: Steadiness measures the extent to which clusters in the projected space
form clusters in the original space, and Cohesiveness measures the opposite. They extract random clusters with arbitrary shapes and
positions in one space and evaluate how much the clusters are stretched or dispersed in the other space. Furthermore, our metrics
can quantify pointwise distortions, allowing for the visualization of inter-cluster reliability in a projection, which we call a reliability map.
Through quantitative experiments, we verify that our metrics precisely capture the distortions that harm inter-cluster reliability while
previous metrics have difficulty capturing the distortions. A case study also demonstrates that our metrics and the reliability map 1)
support users in selecting the proper projection techniques or hyperparameters and 2) prevent misinterpretation while performing
inter-cluster tasks, thus allow an adequate identification of inter-cluster structure.

Index Terms—Multidimensional projections, MDP distortions, Inter-cluster tasks, Inter-cluster reliability, Distortion metrics

1 INTRODUCTION

Can we truly trust the clusters revealed by multidimensional projec-
tions (MDP)? One way to understand high-dimensional data in various
domains is to reduce its dimensionality by MDP and thoroughly check
the projection in a lower-dimensional space. However, distortions inher-
ently occur when reducing dimensionality. Such distortions can make
meaningful patterns in projections less trustworthy and can disturb
users’ accurate comprehension of the original data, leading to inter-
pretation bias [49]. Therefore, it is important to measure the overall
distortions using quantitative metrics [22,49], or to visualize where and
how the distortions occurred in the projection [31, 49], which are as
important as generating a good projection in the MDP analysis.

This work was motivated by the following issue: although inter-
cluster tasks, which investigate the inter-cluster structures of a given
dataset (i.e., how clusters are located and related) through its 2D projec-
tion, have been regarded as the core tasks [37,59] for using MDP, only a
few previous metrics have tried to explain the distortions of inter-cluster
structure represented in MDP thus far. Through a literature review
(Sect. 3.1), we organized three types of inter-cluster tasks: 1) identifying
clusters, 2) seeking the relationship between clusters, and 3) compar-
ing clusters of the original data based on the projected representation.
When performing these inter-cluster tasks, users must be aware of the
preservation of the inter-cluster structure in the MDP. We refer to this
as the inter-cluster reliability: how well the inter-cluster structures are
preserved in the MDP. Several previous approaches have tried to reduce
the loss of inter-cluster reliability during projection [21, 43, 47, 50, 51]
or to explain it through visualizations [12, 35, 42]. However, measuring
reliability is a challenging problem, as real-world datasets’ inter-cluster
structures often have no ground truth, and thus the metrics that quan-
tify ground truth reliability cannot exist. Still, this research introduces
new metrics to measure the loss of inter-cluster reliability by quantify-
ing the preservation of randomly extracted clusters and validated their
effectiveness through experiments.

Previous local quality metrics for MDP focused on measuring point-
point distortion [8, 67] or cluster-point distortion [44], or quantified
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the preservation of predefined clusters (e.g., labels of points) [20, 26].
However, all three have difficulties measuring inter-cluster reliability.
Point-point distortion describes a distortion that occurs in the distance
between points. Therefore, point-point distortion metrics take an intra-
cluster distortion into account as the points within the cluster are close
together but largely dismiss inter-cluster distortion as the points from
different clusters are far away. Cluster-point distortion metrics instead
describe a distortion that occurs between a cluster and its nearby points
in both the original and projected spaces, and thus cannot consider
complex inter-cluster structures that consist of multiple clusters, as they
consider each cluster individually. Quantifying the preservation of the
predefined clusters is also not an adequate measure for inter-cluster
reliability, as many real-world datasets have no ground truth clusters.

In this paper, we propose Steadiness and Cohesiveness, two metrics
that quantitatively evaluate inter-cluster reliability. Steadiness measures
the inter-cluster reliability in the projected space (i.e., to what degree the
cluster in the projection is in a steady state that reflects the actual cluster
in the original space). Cohesiveness measures the inter-cluster reliability
in the original space (i.e., to what degree real clusters in the original
space stand together cohesively in the projection). We first formulated
three design considerations of Steadiness and Cohesiveness so that the
metrics can adequately evaluate inter-cluster reliability by quantifying
how well inter-cluster tasks can be performed accurately in MDPs (i.e.,
measure the potential accuracy of the inter-cluster tasks). To make our
metrics fulfill the considerations, we defined new inter-cluster distortion
types—False Groups and Missing Groups—and designed Steadiness
and Cohesiveness to measure each, respectively. Our metrics measure
inter-cluster reliability by repeatedly extracting random clusters from
one space and quantifying how much the clusters have been stretched
or dispersed in the opposite space.

We also developed a reliability map to visualize inter-cluster reliabil-
ity quantified by Steadiness and Cohesiveness within projections. By
aggregating the underlying distortion information of each data point
summarized in our metrics, the reliability map shows where and how
the inter-cluster distortion occurred.

Through quantitative and qualitative experiments, we confirmed the
effectiveness and usefulness of our metrics. The quantitative experi-
ments verified that our metrics accurately capture inter-cluster distor-
tions and thus properly measure inter-cluster reliability, while baseline
local metrics, such as Trustworthiness & Continuity, failed to identify
even apparent distortions. Furthermore, a qualitative case study showed
that our metrics and the reliability map support a precise identification
of the inter-cluster structure of the original space by helping users
choose the proper projections and perform the inter-cluster tasks while
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being aware of misinterpretations.

2 BACKGROUND AND RELATED WORK

2.1 MDP Distortions
Many MDP techniques, such as t-SNE [36], Isomap [65], and
UMAP [41], have been proposed to understand and visualize high-
dimensional data1; however, every MDP produces distortions because
information loss is inevitable when dimensionality is reduced.

2.1.1 Distortion Types
In his seminal work [2], Michaël Aupetit defined two types of MDP
distortion: stretching and compression. Stretching occurs when pairwise
distances in the projected space are expanded compared to the original
pairwise distances, and compression does the opposite. Afterward,
Missing Neighbors and False Neighbors [31, 32] distortion types were
introduced to interpret the stretching and compression in the context of
neighborhood preservation. Let f : X → Y be a smooth mapping where
X = {xi ∈RD, i = 1,2, . . . ,N} and Y = {yi ∈Rd , i = 1,2, . . . ,N} for
some D > d. Each data point pi has its high-dimensional coordinate, xi,
and the corresponding low-dimensional coordinate yi. For any point pi,
its k neighbors in the projected and original spaces are denoted as Cyi

and Cxi , respectively. Missing Neighbors are then defined as Cxi\Cyi .
Similarly, False Neighbors are defined as Cyi\Cxi (Fig. 1a); however, our
literature review (Sect. 3.1) indicated that measuring Missing and False
Neighbors distortion cannot reflect how well inter-cluster tasks can be
performed, and thus cannot correctly evaluate inter-cluster reliability.

To alleviate the mismatch between the inter-cluster reliability and
point-point distortions, Martins et al. [37] defined distortion types
relevant to the cluster-point relationship: Missing Members and False
Members with regard to a group of data points. For a group ΓX ⊂ X of
similar points (e.g., within the same category of a dataset or clustered by
a clustering algorithm) in the original space, ΓY ⊂ Y is used to denote
the “projected group” that corresponds to ΓX . Here, False Members are
the points in ΓY \ΓX , and Missing Members are in ΓX\ΓY (Fig. 1b);
however, the literature review also revealed that the generalization
was insufficient to reflect the degree to which users can perform inter-
cluster tasks precisely. We further generalize the distortion types by
proposing new inter-cluster distortion types that directly harm inter-
cluster reliability.

2.1.2 Distortion Metrics
According to a survey conducted by Nonato and Aupetit [49], most dis-
tortion metrics aim to measure point-point distortion. Among them, a
few metrics evaluate how much Missing and False Neighbors distortion
has occurred. For instance, Trustworthiness and Continuity (T&C) [67]
locally measure how Missing and False Neighbors distort the ranks
of each point’s neighbors. Mean Relative Rank Errors (MRREs) [29]
are similar to T&C; however, they consider not only the rank variance
of the Missing and False Neighbors but also of True Neighbors—the
points that are judged as neighbors in both spaces. Local Continuity
Meta-Criteria (LCMC) [8] is another variant of T&C; it only considers
True Neighbors. Still, measuring point-point distortion cannot ade-
quately measure inter-cluster reliability, since it needs to quantify the
relationship between clusters.

Motta et al. [44] proposed graph-based group validation, which is
the only metric measuring cluster-point distortion we could find as a
relevant work. The metric first extracts clusters from both the original
and projected spaces using graph-based clustering. The metric then
calculates each cluster’s structural persistence in the opposite space
by measuring how much Missing and False Members distorted the
cluster. Given that the metric examines each cluster independently, it is
inappropriate to use it to measure inter-cluster reliability, which refers
to multiple clusters at once.

Measuring the distortion of predefined clusters with a clustering
quality metric has been widely used to evaluate MDP. For example,
Joia et al. [26] and Fadel et al. [20] used the silhouette coefficient [57]
to quantify cluster preservation in MDP. However, one limitation is that

1This paper denotes both linear and nonlinear embedding of multidimen-
sional data as MDP, following previous research [18, 19, 49].

the inter-cluster structures of real-world datasets are usually unknown.
Graph-based group validation also suffers from the same problem, as it
performs clustering once for all data and uses it as predefined clusters.
By contrast, our metrics consider the complex inter-cluster structure by
examining repeatedly extracted random clusters, thus much accurately
quantify inter-cluster reliability.

2.1.3 Distortion Visualizations
To overcome the inherent limitation of metrics that describe only the
overall distortions with one or two representative numerical values,
complementary visualizations are proposed [49]. The visualizations
aim to reveal the submerged distortion information summarized by a
single or two values, thus helping users identify trustworthy areas of
the projection or detect distortion patterns.

Distortion visualizations commonly highlight regions with local
point-point distortions by decomposing the area into grids, where each
grid cell corresponds to the data point and encodes the corresponding
point’s distortion to the cells. The decomposition is usually done using
a heatmap [61], Voronoi diagram [2, 24, 31], or 2D point-cloud [37, 38].
By contrast, MING [10] explains False and Missing Neighbors by visu-
alizing the shared amount of the nearest neighbor graphs constructed in
the original and projected space. In this work, we quantified pointwise
distortions by aggregating the inter-cluster distortion of the clusters and
visualized them.

2.2 Inter-Cluster Reliability
As many MDP techniques intentionally focus on local neighbors,
they have trouble reflecting the original high-dimensional space’s
global inter-cluster structure. For example, Barnes-Hut t-SNE [66]
and LargeVis [63] concentrate on local structures by interpreting data
based on k-Nearest Neighbor (kNN) graphs. Using a kNN with a small
k (k� N) also allows them to reduce computation. However, as kNN
graphs with small k only maintains the relations between the point and
its local neighbors, they can only reflect limited local structures [21].

Recently proposed MDP techniques have tried to preserve both
the local and global inter-cluster structures. For example, Narayan
et al. [47] introduced den-SNE and densMAP, which modify t-SNE
and UMAP, respectively, to better preserve clusters’ density. Another
common strategy is to first construct a global skeletal layout using rep-
resentative points (i.e., landmarks) and formulate local structure around
each landmark [20, 21, 26, 52, 55]. However, even for these approaches,
completely retaining the original space’s inter-cluster structure during
the projection is inherently impossible. Therefore, it is vital to measure
the extent to which these techniques preserve inter-cluster reliability
for a proper evaluation and analysis.

Previous studies have attempted to explain the inter-cluster reliability
of MDP through visualizations. For instance, the Compadre system [12]
enables an inter-cluster structure analysis based on matrix visualization,
and ClustVis [42] does so with a heatmap. Visual analytics systems [7,
35] with similar goals have also been proposed. Unlike these previous
works, which utilized separate visual idioms to show the distortion, we
adopted a strategy of visualizing the distortion within the projection
[31, 37] to explain inter-cluster reliability. Therefore, users can directly
identify where and how the inter-cluster distortions occurred in the
projection.

3 DESIGN CONSIDERATIONS FOR STEADINESS AND COHE-
SIVENESS

In this section, we first survey inter-cluster tasks, which are essential in
data analysis using MDP [37, 59], through a literature review. We then
establish the design considerations based on the survey that our metrics
(Steadiness and Cohesiveness) should satisfy to adequately measure
how much inter-cluster tasks can be held precisely in MDP.

3.1 Inter-Cluster Tasks Analysis
To identify the importance of inter-cluster structure preservation and to
elicit the design considerations for our metrics, we inspected previous
papers that addressed tasks related to clusters. We first investigated 31
papers introduced in a systematic review conducted by Sacha et al. [58],
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Fig. 1. Illustration of the concepts of a) Missing Neighbors and False Neighbors, b) a group and its Missing / False Members, c) Missing Groups, and
d) False Groups. Data points are represented as black-bordered circles, triangles, and stars. Groups (clusters) are depicted as the objects with
dashed or dotted outlines.

which surveyed how analysts interact with MDP. We also investigated
155 articles citing Sacha et al. using Google Scholar to expand the
search space. As a result, we identified 26 papers concerning inter-
cluster tasks: tasks that investigate the inter-cluster structure of original
data through its 2D projections. Regarding the task taxonomy for MDP
proposed by Etemadpour et al. [18, 19], we classified the tasks into
three categories in terms of inter-cluster distortions. We then organized
them into individual tasks, as listed in the following:
T1: Identify separate clusters in the original space by exploring

clusters in the projected space. Recognize the separation be-
tween clusters [9, 14, 69] or distinguish a cluster from the oth-
ers [46, 56].

T2: Seek the relationships between clusters of the original space
based on those of the projected space. (1) Investigate the hier-
archical or inclusion relation between clusters (i.e., check whether
clusters can again be divided into smaller parts with higher density,
which we call “subclusters”) [34, 72]. (2) Estimate the clusters’
similarities based on their distances in the projected space [46,71].

T3: Compare clusters in the original space based on their fea-
tures in the projected space. Estimate and compare the clusters’
original sizes or densities based on their sizes or densities in the
projected space [1, 7].

The tasks were verified through semi-structured interviews with four
machine learning (ML) engineers (E1-E4) with more than three years
of experience. Three engineers confirmed that they practically perform
the tasks for the real-world problem. Only E1 said that he does not
perform the tasks. This is because he usually works with data with well-
distributed vector representations processed by a deep neural network,
where no inter-cluster structure exists.

Previous surveys of high-dimensional data analysis tasks based on
MDPs further confirm our task analysis results, as those works show
similar results to ours, despite using different methodologies. T1 is
covered by Brehmer et al.’s task taxonomy based on interviews with
10 data analysts [5], and T2 and T3 are covered by the taxonomy of
cluster separations in MDPs discussed by Sedlmair et al. [60].

Our survey indicated that point-point and cluster-point distortion
metrics cannot correctly quantify how well inter-cluster tasks can be
performed. Point-point distortion metrics focus on each point’s neigh-
borhood instead of the inter-cluster structure. Therefore, the metrics can
only measure the potential accuracy of relation-seeking tasks relevant to
point-point relations, such as finding kNN of the given point [18]; they
cannot measure the extent to which inter-cluster tasks can be performed
accurately as those tasks focus on the cluster level.

Cluster-point distortion metrics can estimate the potential accuracy
of T3, as the size and density of each cluster are related to the cluster
itself. More precisely, if an MDP generates outliers for a cluster, the
cluster’s size is reduced (if the density is maintained), or its density
is reduced (if the size is maintained). Both distortions directly affect
the comparison task. By contrast, cluster-point distortion metrics still
fails for T1 and T2. As the metrics consider each cluster independently,
they can only work for cluster identification tasks related to a single
cluster (e.g., distinguishing the outliers of the cluster [18]) or relation-
seeking tasks about a single cluster (e.g., finding k closest points of the
given cluster [18]); however, they cannot provide sufficient information
required to support T1 and T2 that consider multiple clusters at once.

3.2 Design Considerations
Based on the task analysis, we formulated three design considerations
(C1, C2, C3) that Steadiness and Cohesiveness should satisfy to ad-

equately quantify how accurately the three inter-cluster tasks can be
performed and thus able to precisely measure inter-cluster reliability.
C1: Capture the inter-cluster structure in detail. The inter-cluster

structure in MDP is complex and intertwined [72], and often
has no ground truth. Furthermore, each cluster’s characteristics
(e.g., shape, density, or size) vary widely [23]. Therefore, to
quantify how precisely users can identify clusters (T1) or seek
relationships between them (T2), we should thoroughly consider
the inter-cluster structure in detail.

C2: Consider stretching and compression individually. The dis-
tances between clusters may be affected by two aspects of geo-
metric distortions: stretching and compression [2]. If stretching
occurs, users can misunderstand nearby clusters as distinct clus-
ters. The opposite can happen if compression occurs (i.e., nearby
groups can be identified as a single cluster). Furthermore, clusters’
size and density can be overestimated due to stretching or can be
underestimated by compression. As the two aspects of distortion
result in different types of misperceptions about the clusters’ size
and density (T3) or their distance (T2-2), we should consider both
aspects individually.

C3: Measure how accurately the clusters identified in the projec-
tion reflect their original density and size. Users can have mis-
conceptions when comparing clusters (T3) if the projected clus-
ters’ size and density do not reflect those in the original space. To
correctly quantify how much such misunderstandings can happen,
we need to measure how accurately the clusters in the projection
reflect their original density and size.

4 STEADINESS AND COHESIVENESS

We propose Steadiness and Cohesiveness to measure inter-cluster relia-
bility by evaluating inter-cluster distortion, satisfying our four design
considerations. Steadiness measures inter-cluster reliability in the pro-
jected space (e.g., separated clusters in the original high-dimensional
space are still separated in the projected space), while Cohesiveness
does the same for the original space (e.g., each cluster in the original
space is not dispersed in the projected space).

4.1 Defining Inter-Cluster Distortion Types
To design Steadiness and Cohesiveness, we first defined two inter-
cluster distortions types—False Groups and Missing Groups—by gen-
eralizing False and Missing Neighbors to the cluster level. False Groups
distortion denotes the cases in which a low-dimensional group in a sin-
gle cluster (red dashed circle in Fig. 1d) consists of separated groups in
the original space (blue dotted circles in Fig. 1d), and Missing Groups
distortion occurs when the original group (red dashed circle in Fig. 1c)
misses its subgroups (green dotted circles in Fig. 1c) and therefore
is divided into multiple separated subgroups in the projected space.
Steadiness and Cohesiveness evaluate how well projections avoid False
and Missing Groups, respectively (C2).

4.2 Computing Steadiness and Cohesiveness
We compute inter-cluster reliability through the following procedure:
(Step 1) Constructing dissimilarity matrices. (Step 2) Iteratively com-
puting partial distortions. (Step 3) Aggregating partial distortions into
Steadiness and Cohesiveness. Based on the definitions of the two mea-
sures, Steadiness increases as clusters extracted from the projected
space stay closer consistently together in the original space. In con-
trast, Cohesiveness increases when clusters in the original space are
maintained more consistently in the projected space.
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Each step is designed to satisfy all the design considerations
(Sect. 3.2). First, we split the workflow to handle Steadiness and Cohe-
siveness independently after step 1 (C2). Step 2 exploits randomness to
cover the complex inter-cluster structures (C1) and inherently quantifies
how well the original density and size of clusters are retained (C3).

The workflow requires four functions as hyperparameters:
• Distance function for points, dist

– Input: two points p and q
– Output: the distance (or dissimilarity) between p and q

• Distance function for clusters, dist cluster
– Input: two clusters A and B
– Output: the distance (or dissimilarity) between A and B

• Cluster extraction function, extract cluster
– Input: a seed point p
– Output: a cluster in the projected space (for Steadiness) or

the original space (for Cohesiveness) centered on p
• Clustering function, clustering

– Input: a set of points P
– Output: a clustering result of the input points P where the

clustering takes place in the original space (for Steadiness)
or the projected space (for Cohesiveness)

Two distance functions are used to compute the amount of inconsistency,
while the other two functions are used for the iterative computation of
partial distortions. These functions are explained in detail in Sect. 4.3.

4.2.1 Step 1: Constructing Dissimilarity Matrices
We begin the measurement by constructing dissimilarity matrices D+

and D−. We first construct distance matrices H and L satisfying Hi j =
dist(hi,h j) and Li j = dist(li, l j), where hi and li denote the original
and projected coordinates of input data point pi, respectively. For dist,
we used Shared-Nearest Neighbor (SNN) based dissimilarity [16] as
a default (Sect. 4.3). H and L are then normalized by dividing all
elements by their max elements Hmax and Lmax. Raw dissimilarity
matrix D is obtained by subtracting L from H. The positive elements
in D denote that the distance between the corresponding points pair is
compressed, and the opposite denotes that the distance is stretched. We
then construct D+ and D−, where D+

i j = (Di j if Di j > 0, else 0) and
D−i j = (−Di j if Di j < 0, else 0).

4.2.2 Step 2: Iteratively Computing Partial Distortions
The next step is to iteratively compute partial distortions by randomly
extracting clusters from one space and evaluating their dispersion in
the opposite space. In this section, we describe how to compute partial
distortions in a single iteration.

Extracting random clusters For each iteration, we first select a
seed point randomly in the projected space (Steadiness) or the original
space (Cohesiveness). Then, the extract cluster function takes the
random seed point as input and extracts a cluster centered on the point
as output. The random selection of the seed point leads to the extraction
of clusters from diverse locations and therefore it is possible to cover
the entire inter-cluster structure after sufficient iterations (e.g., 200
iterations for the data consists of 10,000 points) (C1). By default, we
use the SNN similarity (Sect. 4.3) for the extract cluster function to
gather points near the seed point.

Revealing the cluster’s dispersion in the opposite space Next,
we reveal how the randomly extracted cluster is dispersed in the op-
posite space. To do this, the clustering function takes the points of
the extracted cluster generated by extract cluster as input. Afterward,
the clustering function clusters the input points in the opposite space
and returns the set of separated clusters C = {C1,C2, . . . ,Cn} as output.
Hierarchical DBSCAN (HDBSCAN) [6, 40] utilizing an SNN-based
distance function is used as the default clustering function (Sect. 4.3).

This step also allows the metrics to measure how well the clusters
reflect their original density and size (C3). If a cluster’s original outliers
are merged into a single cluster during MDP (False Groups distortion),
either the cluster’s size or density will be increased. This situation can
be captured while checking the projected cluster’s dispersion in the
original space. For the opposite case (Cohesiveness), if an original

space’s cluster loses some of its points during MDP, either its size
or density in the projected space will be reduced. Revealing Missing
Groups distortion captures this issue (Sect. 7.1).

Computing distortions between dispersed groups In this
step, we take C as input and generate distortion mi j and its weight wi j
for each pair of clusters (Ci,C j), based on point-stretching and point-
compression metrics proposed by Michaël Aupetit [2]. We generalized
the point-stretching and point-compression to the cluster-stretching
mstretch

i j (Steadiness) and cluster-compression mcompress
i j (Cohesiveness)

by substituting the distance between points to the distance between
clusters. For each cluster pair (Ci, C j), we compute their distance δh and
δl in the projected space and the original space, respectively, utilizing
dist cluster. The default dist cluster is designed by expanding the
SNN-based distance function for points (Sect. 4.3). Then, we check
whether the distance is compressed or stretched and consecutively
compute the distortion as follows:

mstretch
i j =

µstretch
Ci,C j

−minD−

maxD−−minD−
, mcompress

i j =
µ

compress
Ci,C j

−minD+

maxD+−minD+
,

where

µ
stretch
Ci,C j

=−(δh−δl) if − (δh−δl)> 0, otherwise 0,

µ
compress
Ci,C j

= δh−δl if δh−δl > 0, otherwise 0.

The weight wi j of a pair (Ci,C j) is determined as |Ci| · |C j|. The
weights penalize the distortion of larger clusters more than smaller
ones; thus, we can deal with the inter-cluster structure consisting of the
clusters of various sizes (C1).

4.2.3 Step 3: Aggregating Partial Distortions
This step aggregates the iteratively computed partial distortions to
Steadiness and Cohesiveness. The iterative partial distortion measure-
ment generates a set of distortions and their corresponding weights.
Let’s denote the set as follows:

• (mcompress
1 ,w1), · · · ,(mcompress

nSt ,wnSt ) where nSt denotes the number
of total cluster pairs generated throughout the entire partial distortion
measurement of Steadiness.

• (mstretch
1 ,w1), · · · ,(mstretch

nCo
,wnCo) where nCo denotes the number of

total cluster pairs generated throughout the entire partial distortion
measurement of Cohesiveness.

We then calculate the final scores as follows:

STEADINESS = 1−∑
nSt
i=1 wi ·mcompress

i /∑
nSt
i=1 wi.

COHESIVENESS = 1−∑
nCo
i=1 wi ·mstretch

i /∑
nCo
i=1 wi.

The final scores lie in the range of [0, 1]. The weighted average is
subtracted from 1 to assign lower scores to lower-quality projections.

4.3 Designing Hyperparameter Functions
4.3.1 Parameterizing Hyperparameter Functions
The workflow of computing Steadiness and Cohesiveness requires
four hyperparameter functions: dist, dist cluster, clustering, and
extract cluster. We parameterized these functions because both the
definition of distance and the definition of clusters vary depending
on the analysis goals. There are various ways to define the distance
between two data points (e.g., Euclidean distance, geodesic distance,
cosine similarity). The definition of clusters also varies, and thus many
different clustering algorithms (e.g., K-Means [13], Density-based clus-
tering [17], Mean shift [11]) exist. Therefore, it is unreasonable to
use a fixed definition for both. This is in line with the fact that, as
there are various ways to define similarity between each point and its
local neighbors, there are diverse local metrics that utilize different
similarity definitions. However, parameterization could reduce metrics’
interpretability. Thus, we designed the default hyperparameter func-
tions that align with our design considerations to allow users to easily
understand and use our metrics.
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4.3.2 Default Hyperparameter Functions

To design the default functions, we first set the definitions of distance
and cluster. We defined distance as the dissimilarity of the points based
on the Shared-Nearest Neighbors (SNN) [16] similarity, which assigns
a high similarity to point pairs sharing more kNNs. SNN-based dis-
similarity was selected because Steadiness and Cohesiveness should
reflect the inter-cluster structure of the original high-dimensional space.
Although it is common to use a kNN graph to reflect a high-dimensional
space [63, 66], kNN’s ability to describe the structure of data decreases
as dimensionality grows [3,25]. SNN-based dissimilarity tackles this is-
sue as the similarity of two points is robustly confirmed by their shared
neighbors, thus better representing the structure of high-dimensional
spaces compared to kNN [15, 33]. We also defined a cluster as the
contiguous data region, or manifold with an arbitrary shape, where the
density of the region is higher than its surroundings. This definition is
followed by density-based clustering algorithms. We used this defini-
tion because the metrics should capture the complex and intertwined
inter-cluster structure consisting of clusters of various sizes and shapes
(C1), and therefore should be able to define clusters more flexibly. We
designed the default hyperparameter procedures to satisfy both the
definitions and the original design considerations (Sect. 3.2).

Distance function for points, dist As mentioned, the distance
function is based on SNN similarity. Let us first denote k-nearest neigh-
bors of a point p as p1, p2, · · · , pk, in order. The SNN similarity between
two points p,q is defined as sim(p,q)=∑(m,n)∈Np,q

(k+1−m) ·(k+1−
n) where Np,q is a set of each pair (m,n) satisfying pm = qn. sim(p,q)
increases when more k-nearest neighbors with high ranks overlap. We
consecutively normalized all SNN similarity values by dividing them
by the max SNN similarity max sim of the dataset. Finally, we defined
distance function dist as dist(p,q) = 1/(sim(p,q)+α). We used re-
ciprocal transformation [62] to further penalize low similarity, where α

controls the amount of penalization. α = 0.1 is used as the default.
Distance function for clusters, dist cluster As for dist clust-

er, we first defined the similarity between clusters and converted
it to their distance. We used average linkage [45], as it is robust
to outliers compared to competitors (e.g., simple linkage), thus
defining the similarity of two clusters A and B as sim(A,B) =
∑pA∈A ∑pB∈B sim(pA, pB)/|A| · |B|, where pA, pB denotes the points
in A and B. We then defined the distance between A and B as
dist cluster(A,B) = 1/(sim(A,B)+α).

Clustering function, clustering As our definition of cluster
is the one used in conventional density-based clustering, designing
clustering required a single decision: selecting the proper density-
based clustering algorithm. We selected HDBSCAN, which is a state-
of-the-art density-based clustering algorithms. As HDBSCAN can
handle clusters with various shapes and densities and is robust to noises
(outliers) [39], exploiting it helps to reveal the dispersion of clusters
regardless of the clusters’ characteristics (e.g., shape, size, or density).
Therefore, it helps the metrics deal with complex inter-cluster structures
(C1). HDBSCAN also tackles the curse of dimensionality [68], which
suits our metrics that need to consider the higher dimensional space.
To align clustering with our dissimilarity definition, our HDBSCAN
utilized dist for the distance calculation.

Cluster extraction function, extract cluster The design of
extract cluster mainly follows a density-based clustering process,
aligned to clustering; it uses random seed point as a sole core point and
assigns nearby points, which are treated as non-core points, successively
to form a cluster. In detail, the function traverses seed point p’s k-nearest
neighbors and includes each neighbor point pi as a cluster member
with a probability of sim(p, pi)/max sim. When the neighbor point
is determined as a cluster member, it goes into a queue so that its
neighbor can also be traversed later. Adding neighbors stochastically
makes extracted clusters not span the entire kNN graph but form a
dense structure.

To diversify the size of the extracted clusters, we limited the traversal
number starting from the seed point and allowed repeated visits. Com-
bined with the random starting seed point, this strategy enriches the
range that our metrics cover, thus helping the metrics deal with complex

inter-cluster structures (C1). The strategy fundamentally relies on the
fact that randomness can help analyze a complex, uncertain system [64].
We fixed the number of traversal to 40% of the total number of data
points for our evaluations (Sect. 6, 7).

4.4 Visualizing Steadiness and Cohesiveness
To overcome the limitation of metrics in that they describe the overall
distortion in a single or two numeric values, we developed a comple-
mentary visualization: a reliability map (Fig. 4, 5, 6). The reliability
map reveals how and where inter-cluster distortion occurred by show-
ing Steadiness and Cohesiveness at each point. The distortions at each
point are quantified by aggregating partial distortion values computed
throughout the measurement of our metrics. The map shows these
pointwise distortions embedded within the projection.

The pointwise distortion is obtained by aggregating partial distor-
tions computed throughout the iterative process (Sect. 4.2.2). Recall
that the iterative computation results in a set of distortion mcompress

i j

or mstretch
i j and weight wi j between a pair of clusters {Ci,C j}. For all

{Ci,C j}, we register every p ∈C j to every q ∈Ci with the distortion
strength mi j ·wi j , and do the same in the opposite direction. Duplicated
registration of a point are removed by averaging distortion strengths.
We compute each point’s approximated local distortion by summing up
the registered distortion strengths.

The reliability map visualizes these pointwise distortions through
edge-based distortion encoding. We constructed a kNN graph in the
projection and made each edge (p,q) of the graph depict the sum of p
and q’s pointwise distortion. If the points within a narrow region have
high distortion, the edges between the points will be intertwined in the
region (e.g., red dotted contours in Fig. 5, 6); they will be recognized
as clusters with distinguishable inter-cluster distortion. However, using
a large k might generate visual clutter; we empirically found that k
between 8 and 10 is an adequate choice for both expressing inter-
cluster distortion and avoiding visual clutter. Martins et al.’s point cloud
distortion visualization [37] is similar to ours, but it computes the
distortion value at each pixel instead of encoding to edges.

To express False Groups and Missing Groups distortion types simul-
taneously, we used CheckViz’s two-dimensional color scale [31] (lower
right corner of Fig. 5). Following the color scheme of CheckViz, we
assigned purple to the edges with False Groups distortion and green
to the edges with Missing Groups distortion. Moreover, edges with no
distortion are represented as white, while black edges indicate that both
distortion types occurred together.

We also implemented a cluster selection interaction (e.g., lower right
box in Fig. 4) to allow users to identify Missing Groups distortion
more precisely. After users select a cluster C = {p1, p2, · · · , p|C|} by
making a lasso with a mouse interaction, the reliability map constructs
C′ = {A(p1)∪A(p2)∪ ·· · ∪A(p|C|)}, where A(p) denotes the set of
registered points of a point p. Subsequently, the edges connected to
the points in C′ are highlighted in red. Each highlighted edge’s opacity
encodes the sum of distortion strength of its incident points toward C
(i.e., how much distance between its incident points and C is stretched).

5 IMPLEMENTATION

Steadiness and Cohesiveness are written in Python with an interface
for users or programmers to easily implement and use user-defined
hyperparameter functions. This is to facilitate the development and
verification of possible alternatives of Steadiness and Cohesiveness
later. The partial distortion computation is parallelized with CUDA
GPGPU [48] supported by Numba [27]. We implemented the reliability
map in JavaScript using D3.js [4]. The source code of the metrics and
the map is available at github.com/hj-n/steadiness-cohesiveness
and github.com/hj-n/snc-reliability-map, respectively.

6 QUANTITATIVE EVALUATIONS AND DISCUSSIONS

We evaluated Steadiness and Cohesiveness in terms of quantifying
inter-cluster reliability by comparing them with existing local distortion
metrics. We verified that our metrics well capture inter-cluster reliability,
while previous local metrics miss some cases even with the apparent
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Fig. 2. The datasets and their projections used in Experiment A-D. A, B) The synthetic projection of the dataset with six 100-dimensional spheres,
consists of six circles (A) and 12 circles (B) with an increasing amount of overlapping. C) MNIST dataset and their projections created by replacing
a certain proportion of the t-SNE projection with random points with increasing replacement (repl.) ratios. D) The UMAP projection of the data
randomly sampled from the RGB color cube dataset with an increasing nearest neighbors hyperparameter value.

distortions. The reliability map ascertained that our metrics accurately
captured where and how the inter-cluster distortion occurred. Moreover,
we evaluated our metrics’ robustness by testing simpler hyperparameter
functions (Sect. 4.3).

As baseline metrics, we chose T&C and MRREs (Sect. 2.1.2), the
two representative local metrics that measure nearest neighbors preser-
vation. We chose the two for comparison because 1) they were designed
to measure Missing and False Neighbors, the point-wise version of
Missing and False Groups and 2) nearest-neighbor preservation has
been used as the core evaluation criteria for evaluating MDP techniques
previously [21, 30, 43, 55, 66]. For MRREs, in this section we use
“MRRE [Missing]” for the one that quantifies Missing Neighbors, and
“MRRE [False]” for the other that quantifies False Neighbors.

6.1 Sensitivity Analysis
We conducted four experiments to check whether Steadiness and Cohe-
siveness can sensitively measure inter-cluster reliability. We designed
the first two experiments (A, B) to evaluate our metrics’ ability to quan-
tify the inter-cluster distortion using the projections with synthetically
generated False Groups (Experiment A) or Missing Groups (Experi-
ment B) distortions respectively. The next two experiments (C, D) were
conducted to investigate whether our metrics have the ability to properly
assess the overall inter-cluster reliability difference of the projections.

6.1.1 Experimental Design

Experiment A: Identifying False Groups The goal of the first exper-
iment was to evaluate whether and how Steadiness and previous local
metrics (Continuity, MRRE [False]) identify False Groups. We first gen-
erated high-dimensional data consisting of six 100-dimensional spheres
whose centers were equidistant from the origin. Each sphere consisted
of 500 points. We then set the initial 2D projection of the dataset as six
circles around the origin (the first projection on the first row of Fig. 2).
Note that this projection is the most faithful view of the original data as
we made each circle correspond to one high-dimensional sphere. To sim-
ulate False Groups distortion, we then distorted this ground-truth projec-

tion by overlapping the circles in pairs (the first row of Fig. 2). For each
pair of circles (A,B) centered at CA, CB, respectively, we adjusted the
degree of overlap by changing 6 CAOCB from 60° to 0° with an interval
of 2.5°, where O is the origin. For each projection, we measured Steadi-
ness and Cohesiveness (k = [80,90,100,110,120], 500 iterations),
T&C (k = [5,10,15,20,15]), and MRREs (k = [5,10,15,20,15]). We
used different k values and used the mean of their results as the final
score for soundness.

Experiment B: Identifying Missing Groups To evaluate Cohe-
siveness and previous local metrics’ (Trustworthiness, MRRE [Miss-
ing]) ability to measure Missing Groups distortion, we used the same
high-dimensional dataset as Experiment A, but this time, we synthe-
sized the initial projection consisting of 12 equally distant circles, where
each consists of 250 points. We made a pair of nearby circles corre-
spond to a single sphere in the original space (the second row of Fig. 2).
We then overlapped each pair of circles (A,B) by adjusting 6 CAOCB
from 30° to 0° with an interval of 1.25° (the second row of Fig. 2).
Note that unlike Experiment A, the initial projection is the least faithful
projection but becomes more faithful as the circles in each pair overlap
more. We used the same metrics setting as Experiment A.

Experiment C: Capturing quality degradation To test our
metrics’ ability to capture the quality degradation of the projection, we
computed our and previous metrics for the projections with different
levels of quality degradation. We first created a 2D t-SNE projection of
the MNIST dataset [28] (the first projection on the third row of Fig. 2).
We then replaced a certain proportion of the projected points with
random points. We varied the replacement rate from 0 to 100% with an
interval of 5% (the third row of Fig. 2). The inter-cluster reliability of
the projections certainly degrade as the replacement rate increases. We
checked whether the metrics can capture such quality degradation. We
used the same metrics setting as Experiment A.

Experiment D: Identifying the effect of projection hyperparame-
ters The final experiment was conducted to evaluate the capability of
our metrics to capture the inter-cluster reliability differences caused by
the hyperparameter choices of an MDP technique. This experiment was
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Fig. 3. The result of quantitative experiments A-D; the scores measured
by our metrics (Steadiness and Cohesiveness) and baseline local distor-
tion metrics (MRREs, T&C).

inspired by an analysis from the UMAP paper [41] where the authors
assessed the impact of a hyperparameter, the number of nearest neigh-
bors n, on the projection quality. Lower n values drive UMAP to more
local structures, while higher values make the projection to preserve the
global structures rather than the local details. In the original analysis,
the authors qualitatively analyzed how n affects the UMAP projection
of a randomly sampled 3-dimensional RGB cube data. The authors
concluded that since randomly sampled data have no manifold struc-
ture, larger n values generate more appropriate projections than lower
n values. Lower n values instead treat the noises from random sam-
pling as fine-scale local manifold structures, generating an unreliable
interpretation of the structure [41].

We tested whether our and previous metrics can quantitatively re-
produce this conclusion. We first constructed a dataset of 4000 points
randomly sampled from a 3-dimensional RGB cube. UMAP projections
of the dataset with different n (4−9 with an interval of 1, 10−90 with
an interval of 10) were then generated (the fourth row of Fig. 2) and
tested with the same metrics setting as Experiment A. We set another
hyperparameter of UMAP, min dist, to 0 because higher min dist
values tune projections to lose the local structure, reducing the differ-
ence between the projections generated with higher and lower n values.
Setting it at 0.0 prevents such an effect from affecting the experiment.

6.1.2 Results

Experiment A As we decreased the angle between each circle
pair (i.e., increasing the amount of false overlap), both Steadiness
(slope = 3.05 ·10−2, p < .001) and Cohesiveness (slope = 1.98 ·10−2,
p < .001) decreased. The baseline local metrics: Trustworthiness (slope
= 9.31 · 10−3, p < .001), Continuity (slope = 3.02 · 10−3, p < .001),
MRRE [Missing] (slope = 9.13 ·10−3, p < .001), and MRRE [False]
(slope = 3.01 · 10−3, p < .001), also decreased, but the slope was
statistically gentle compared the our metrics (p< .001 for all). (Fig. 3A)

Experiment B As we decreased the angles between each circle
pair (i.e., making projections more faithful), Cohesiveness drastically in-
creased around 10° (slope =−0.169 in range [15,5], p < .001), which
is the point where the circle pair starts to overlap. Other measures
such as Steadiness (slope =−2,29 ·10−4, p < .001), Trustworthiness
(slope = −1.81 · 10−5, p < .001), Continuity (slope = −7.17 · 10−4,
p < .001), MRRE [Missing] (slope = −3.86 · 10−6, p < .001) and
MRRE [False] (slope =−7.22 ·10−4, p < .001) did not changed sig-
nificantly (Fig. 3B).

Experiment C As the replacement rate increased, Steadiness
(slope =−4.29 ·10−3, p < .001), Cohesiveness (slope =−2.35 ·10−3,
p < .001), Trustworthiness (slope = −4.60 · 10−3, p < .001), Con-
tinuity (slope = −4.70 · 10−4, p < .001), MRRE [Missing] (slope
=−4.60 ·10−3, p < .001), and MRRE [False] (slope =−4.78 ·10−4,

Lassoing

Reliability Map CheckViz Reliability Map

Experiment A Experiment B

CheckViz

Fig. 4. The reliability map and CheckViz visualizing the distortion of
the projections from Experiment A (red dotted square in Fig. 2) and
Experiment B (blue dashed square in Fig. 2)). Unlike CheckViz, where no
interesting pattern was shown, the reliability map demonstrated where
and how False Groups distortion occurred (Exp. A). Even Missing Groups
distortions was identified by the cluster selection interaction (Exp. B).

p < .001) all decreased. (Fig. 3C)
Experiment D As we increased n, both Steadiness (slope =

5.78 · 10−4, p < .001) and Cohesiveness (slope = 9.44 · 10−4, p <
.001) increased, while Trustworthiness (slope = −8.17 ∗ 10−6, p <
.001), MRRE [Missing] (slope = −3.87 · 10−5, p < .001) decreased.
Continuity (slope = 2.13 ·10−4, p < .001) and MRRE [False] (slope
= 8.83 ·10−5, p < .001) increased, though the slopes were statistically
gentle compared to Steadiness (p < .001 for both). All baseline local
metrics early saturated near the max score around n = 5. (Fig. 3D).

6.1.3 Discussion
The result of Experiment A suggests that our metrics could identify a
loss of the inter-cluster reliability caused by False Groups distortion,
as Steadiness decreased when the overlap of circle pairs increased.
Cohesiveness also decreased, which means that not only False but also
Missing Groups distortions had occurred. This is because for point
p and q in a circle, although their Euclidean distance is maintained
while the circle is overlapping with another circle, the SNN similarity
decreases as more points intervene between p and q. Continuity and
MRRE [False] also captured the decrease in the inter-cluster reliability
due to False Groups distortion, but slower compared to our metrics.

For Experiment B, the result confirms that Cohesiveness correctly
identifies Missing Groups distortion as the metric increased following
the increasing overlap of circles that reduces Missing Groups distortion.
Moreover, in Experiment B, the amount of Missing Groups distortion
was captured only by Cohesiveness, which showed that our metrics
have the ability to pinpoint the particular inter-cluster distortion type. In
contrast, both Trustworthiness and MRRE [Missing] failed to capture
this apparent Missing Groups distortion.

The Reliability map further confirms the results of Experiment A and
B as it showed that Steadiness and Cohesiveness accurately identified
the place where False Groups and Missing Groups occurred (Fig. 4).
Reliability map located the False Groups distortion of Experiment A
by highlighting the overlapped area in purple. For Experiment B, it
was able to identify the Missing Groups relationship of two separated
circles in a pair through the cluster selection interaction, as selecting
the portion of one circle showed that the other circle was actually close
to it; this result matches the ground truth. In contrast, CheckViz, which
visualized the False and Missing Neighbors distortion of each point
computed by T&C, did not show any pattern.

In Experiments C and D, both Steadiness and Cohesiveness could
capture the decrease (Experiment C) and the increase (Experiment D)
in inter-cluster reliability. Moreover, Experiment D showed that our
metrics also can be used to quantify the effect of a hyperparameter by
reproducing the result of human observers’ qualitative analysis [41].
In contrast, local metrics barely captured the certain increase of inter-
cluster reliability in Experiment D.

Overall, the experiments proved that our metrics can properly mea-
sure inter-cluster reliability. On the contrary, local metrics failed for
some cases even with the apparent inter-cluster distortion.

7

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


UMAP Isomap

LLE LLE + Interaction

No distortion

Both occurred

False 
Group

Missing 
Group

0

5

1

6

2

7

3

8

4

9

(St, Co) = (.801, .807) (St, Co) = (.528, .670) 

(St, Co) = (.558, .730)

Fig. 5. The UMAP, Isomap, and LLE projections of MNIST test dataset and the reliability maps that visualize each projection’s inter-cluster distortion.
Overall Steadiness (St) and Cohesiveness (Co) scores are depicted under the name of each technique. For each MDP technique, the left pane
shows the class identity, and the right pane shows the reliability map. Color-encoding of the inter-cluster distortion used in the reliability map is in the
lower right corner. The projection and the corresponding reliability map of t-SNE and PCA are in Appendix B.

Distance Measurement
clustering SNN-based Euclidean

St Co St Co
HDBSCAN 5.78 ·10−4 9.44 ·10−4 3.35 ·10−4 −1.37 ·10−3

X-Means 1.59 ·10−4 1.10 ·10−3 2.07 ·10−4 −4.98 ·10−4

K-Means (K = 5) 2.06 ·10−4 1.40 ·10−3 3.10 ·10−4 −7.01 ·10−4

K-Means (K = 10) 2.36 ·10−4 1.16 ·10−3 3.36 ·10−4 −7.29 ·10−4

K-Means (K = 20) 2.91 ·10−4 9.32 ·10−4 3.41 ·10−4 −6.12 ·10−4

Table 1. The result of Experiment D conducted with diverse hyperpa-
rameter procedure settings (Sect. 6.2). Each cell depicts the slope of
regression line which represents the relation between nearest neighbor

value and the score of Steadiness (St) and Cohesiveness (Co). Every
regression analysis result satisfied p < .001.

6.2 Robustness Analysis

We also investigated the robustness of Steadiness and Cohesiveness
against hyperparameters by conducting Experiment D using Steadiness
and Cohesiveness with different hyperparameters. We tested Steadiness
and Cohesiveness with simpler hyperparameters functions as hyperpa-
rameter functions can considerably change the behavior of our metrics.
For the goal, we tested simpler clustering algorithms, X-Means [54] and
K-Means [13] (number of clusters = 5,10,20), instead of the default
HDBSCAN algorithm for clustering. We also tested the Euclidean
distance as dist instead of the default SNN-based distance. While us-
ing Euclidean distance for the distance measurement between points,
we also defined the distance between two clusters dist cluster as the
Euclidean distance between their centroids instead of the default defini-
tion based on SNN similarity to align with dist. For extract cluster,
we treated every traversed points as cluster members instead of using
probability to weight the points with high SNN similarity.

As a result (Table 1), Steadiness and Cohesiveness with simpler clus-
tering hyperparameter functions both increased as nearest neighbors

values increased, which confirms the ability to properly quantify inter-
cluster reliability. This result shows that our metrics’ capability is not
bound mainly by the selection of clustering but instead originates more
from the power of randomness to analyze complex structures [64]. What
is interesting here is that the case of K-Means (K = 20) showed the most
similar results to the case of the default HDBSCAN hyperparameter
both for Steadiness and Cohesiveness. This is because when clustering
the extracted clusters in the opposite space, the inter-cluster structure
composed of arbitrary shapes and sizes can be better represented by the
fine-grained K-Means clustering result than the coarse-grained result.

However, Cohesiveness failed for all cases that used Euclidean dis-
tance as dist. This result shows that while designing hyperparameters
functions for Steadiness and Cohesiveness, users should carefully con-
sider the definition of the distance between two points.

7 CASE STUDIES

We report two case studies that we conducted with two ML engi-
neers (E2, E3). During the study, we demonstrated to the engineers
how Steadiness, Cohesiveness, and the reliability map works, and they
explored with us the original inter-cluster structure of MNIST and
Fashion-MNIST [73] test datasets, where both live in a 784-dimensional
space and consist of 10 classes. The case study showed that our metrics
and the reliability map supports users in 1) selecting adequate pro-
jection techniques or hyperparameter settings that match the dataset
and 2) preventing users’ misinterpretation that could potentially occur
while conducting inter-cluster tasks (Sect. 3.1). ML engineers agreed
that such support is helpful in interpreting the inter-cluster structure of
high-dimensional data.

7.1 MNIST Exploration with Diverse MDP Techniques
To explore the inter-cluster structure of MNIST, we projected it with
t-SNE, UMAP, PCA [53], Isomap [65], and LLE. We measured the
Steadiness and Cohesiveness (k = 100, 500 iterations) of each projec-
tion and visualized the result with the reliability map (Fig. 5).
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Fig. 6. The reliability maps that visualize the inter-cluster distortion of t-SNE projections (σ = [1,10,100,1,000]) made for Fashion-MNIST test dataset.
Steadiness and Cohesiveness scores are depicted under the the perplexity value of each projection.

We first discovered that visualizing Steadiness and Cohesiveness can
prevent users from misidentifying a cluster separation of the original
space (T1). For instance, in the Isomap projection, we found the region
with high False Groups distortion consists of categories #4 and #7
(red dotted circle in Fig. 5). A similar region was also observed in
the PCA projection (Appendix B). LLE also has the cluster with high
False Groups distortion composed of categories #3, #6, #8, and #9.
Without checking False Groups distortion, one could make the wrong
interpretation that such a region belongs to same cluster; visualizing the
distortion with the reliability map helped us avoid this misperception.

Visualizing False Groups distortion also allowed additional reason-
ing beyond a mere quantitative score comparison to choose the proper
projection technique. We found that False Groups distortions that oc-
curred in Isomap, PCA (overlap of category #4 and #7), and LLE
(overlap of category #3, #6, #8, #9) did not occur in t-SNE or UMAP.
This finding explains why the Steadiness of t-SNE and UMAP are
higher than other projections, advocating the use of t-SNE and UMAP
in exploring the inter-cluster structure of a MNIST dataset.

Still, as the t-SNE and UMAP projections also suffered from Missing
Groups distortion, we critically interpreted that the clusters in these pro-
jections actually stay closer to each other than they look. E3 noted that
this interpretation matches the ground truth that digits in MNIST stay
much closer and mixed in the original space than their representations.

Moreover, we found that by using cluster selection interaction, users
can accurately estimate and compare cluster sizes and shapes (T3). As
we selected the local area in LLE (blue dashed ellipse in Fig. 5), the
reliability map highlighted a much larger region around the selected re-
gion (black long-dashed contour in Fig. 5). This means that the original
cluster containing the selected points was much larger than we can see
in the projections and lost its portion as dispersed outliers (i.e., Missing
Groups distortion occurred). We identified this problem through cluster
selection interaction and escaped from the misinterpretation.

7.2 Fashion-MNIST Exploration with t-SNE

In the second case study, we explored Fashion-MNIST dataset using
t-SNE projections with varying hyperparameters. We measured our
metrics (k = 100, 500 iterations) on t-SNE projections generated with
different perplexity values σ ∈ [1,10,100,1,000] and visualized the
result with the reliability map (Fig. 6). Note that using a high value for
σ makes the t-SNE focus more on preserving global structures [70].

As a result, we found that our metrics and the reliability map can
help in selecting adequate hyperparameter settings. For example, the
projection with σ = 1 had both False and Missing Groups distortion
distributed uniformly across the entire projection space. This finding,
which aligns with the low score of the projection, showed that low σ

values are not sufficient to capture the global inter-cluster structure,
which matches its actual behavior. This result justifies that it is proper
to select a higher σ value to investigate Fashion-MNIST. The fact
that σ = 100 and σ = 1,000 projections earned higher scores for both
Steadiness and Cohesiveness compared to σ = 1 and σ = 10 projections
strengthens this interpretation.

Thus, we subsequently analyzed the σ = 100 and σ = 1,000 pro-
jections and discovered that our metrics prevent users from making
the wrong interpretation of the relations between clusters (T2). We
first noticed that the σ = 100 projection has more compact clusters
compared to the projection with σ = 1,000, where clusters are slightly
more disperser and closer to each other. As the σ = 100 projection
achieved a relatively high Steadiness score, we could conclude that
each compact cluster also exists as a cluster also in the original space.
However, as the σ = 1,000 projection increased Cohesiveness, we
were not able to believe the separation of the clusters depicted in the
σ = 100 projection (T2-1). According to Cohesiveness, the distances
between the clusters in the original spaces is better depicted in the
σ = 1,000 projection. Therefore, it is more reliable to interpret the
original inter-cluster structure as a set of subclusters that constitute
one large cluster rather than as a set of separated clusters (T2-2). E2
paid particular attention to this result. She pointed that it is common to
perceive that projections with well-divided clusters (e.g., σ = 100 pro-
jection) better reflects the inter-cluster structure, but this result shows
that such a common perception could lead to a misinterpretation of
inter-cluster structure.

8 CONCLUSION AND FUTURE WORK

Although it is important to investigate the inter-cluster distortion in
many MDP tasks, there were previously no metrics that directly mea-
sure such distortions. In this work, we first surveyed user tasks related
to identifying the inter-cluster structures of MDP and elicited design
considerations for the metrics to evaluate the inter-cluster reliability.
Next, we presented Steadiness and Cohesiveness to evaluate inter-
cluster reliability by measuring the False Groups and Missing Groups
distortions and presented the reliability map to visualize the metrics.
Through quantitative evaluations, we validated that our metrics ade-
quately measure inter-cluster reliability. The qualitative case studies
showed that our metrics can also help users select proper projection
techniques or hyperparameter settings and perform inter-cluster tasks
with fewer misperceptions, assisting them in interpreting the original
space’s inter-cluster structure.

As a future work, we plan to enhance the scalability of our algo-
rithm. The algorithm currently computes the iterative partial distortion
measurement sequentially. As each iteration works independently, we
plan to accelerate the algorithm leveraging multiprocessing. We also
plan to improve our metrics to consider the hierarchical aspect of inter-
cluster structures and reduce the number of hyperparameters. Another
interesting research direction would be to investigate how Steadiness,
Cohesiveness, and their visualizations affect users’ perception of the
original data, which will provide an in-depth understanding of MDP, as
an expansion of our case study.

ACKNOWLEDGMENTS

Thanks to Yoo-Min Jung and Aeri Cho for their valuable feedback.
This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-
2019R1A2C208906213).

9

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


REFERENCES

[1] L. Amabili. Visualizing algorithms of nonlinear dimensionality reduction
techniques. 2017.

[2] M. Aupetit. Visualizing distortions and recovering topology in continuous
projection techniques. Neurocomputing, 70(7-9):1304–1330, 2007.

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest
neighbor” meaningful? In International Donference on Database Theory,
pp. 217–235. Springer, 1999.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[5] M. Brehmer, M. Sedlmair, S. Ingram, and T. Munzner. Visualizing
dimensionally-reduced data: Interviews with analysts and a characteri-
zation of task sequences. In Proceedings of the Fifth Workshop on Beyond
Time and Errors: Novel Evaluation Methods for Visualization, pp. 1–8,
2014.

[6] R. J. Campello, D. Moulavi, and J. Sander. Density-based clustering
based on hierarchical density estimates. In Pacific-Asia Conference on
Knowledge Discovery and Data mining, pp. 160–172. Springer, 2013.

[7] A. Chatzimparmpas, R. M. Martins, and A. Kerren. t-visne: Interactive
assessment and interpretation of t-sne projections. IEEE Transactions on
Visualization and Computer Graphics, 2020.

[8] L. Chen and A. Buja. Local multidimensional scaling for nonlinear di-
mension reduction, graph drawing, and proximity analysis. Journal of the
American Statistical Association, 104(485):209–219, 2009.

[9] J. Choo, H. Lee, J. Kihm, and H. Park. ivisclassifier: An interactive
visual analytics system for classification based on supervised dimension
reduction. In 2010 IEEE Symposium on Visual Analytics Science and
Technology, pp. 27–34. IEEE, 2010.

[10] B. Colange, L. Vuillon, S. Lespinats, and D. Dutykh. Interpreting distor-
tions in dimensionality reduction by superimposing neighbourhood graphs.
In 2019 IEEE Visualization Conference (VIS), pp. 211–215. IEEE, 2019.

[11] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on pattern analysis and machine
intelligence, 24(5):603–619, 2002.

[12] R. Cutura, M. Aupetit, J.-D. Fekete, and M. Sedlmair. Comparing and
exploring high-dimensional data with dimensionality reduction algorithms
and matrix visualizations. In Proceedings of the International Conference
on Advanced Visual Interfaces, pp. 1–9, 2020.

[13] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification and scene
analysis, vol. 3. Wiley New York, 1973.

[14] A. Endert, C. Han, D. Maiti, L. House, and C. North. Observation-level
interaction with statistical models for visual analytics. In 2011 IEEE
Conference on Visual Analytics Science and Technology, pp. 121–130.
IEEE, 2011.
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