
Leveraging Multimodal LLM
for Inspirational User Interface Search

Seokhyeon Park
Seoul National University
Seoul, Republic of Korea
shpark@hcil.snu.ac.kr

Yumin Song
Seoul National University
Seoul, Republic of Korea
ymsong@hcil.snu.ac.kr

Soohyun Lee
Seoul National University
Seoul, Republic of Korea
shlee@hcil.snu.ac.kr

Jaeyoung Kim
Seoul National University
Seoul, Republic of Korea
jykim@hcil.snu.ac.kr

Jinwook Seo∗
Seoul National University
Seoul, Republic of Korea

jseo@snu.ac.kr

Application Screen

Composition Visual Design

Elements

Screen CategoryApp Category

App Description Screen Role

Similar App Next Screen

Target User Previous Screen

Color Scheme

Action Items Color Palette

Layout Mood

App Category

Health / Fitness

Mood

Calming

Screen Role

Welcome Page

MLLM

Inspirational Semantic-based UI SearchExtract UI Semantics 
using Multimodal LLM

Mobile UI Screen

S&UI

SEARCH BY SEMANTICS

Figure 1: Overview of our approach for semantic-based UI search. Left: A multimodal large language model is employed to
extract UI semantics from mobile UI screens. Right: S&UI, an inspirational semantic-based UI search system, enables designers
to find relevant UI designs by specifying desired semantic attributes.

Abstract
Inspirational search, the process of exploring designs to inform and
inspire new creative work, is pivotal in mobile user interface (UI)
design. However, exploring the vast space of UI references remains
a challenge. Existing AI-based UI search methods often miss crucial
semantics like target users or the mood of apps. Additionally, these
models typically require metadata like view hierarchies, limiting
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their practical use. We used a multimodal large language model
(MLLM) to extract and interpret semantics from mobile UI images.
We identified key UI semantics through a formative study and devel-
oped a semantic-based UI search system. Through computational
and human evaluations, we demonstrate that our approach sig-
nificantly outperforms existing UI retrieval methods, offering UI
designers a more enriched and contextually relevant search experi-
ence. We enhance the understanding of mobile UI design semantics
and highlight MLLMs’ potential in inspirational search, providing
a rich dataset of UI semantics for future studies.
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1 Introduction
User interface (UI) design plays a central role in creating intuitive
and engaging digital experiences. A vital part of the UI design
process is the inspirational search, where designers explore exist-
ing UI designs to inform and inspire their own work [19, 48]. By
leveraging a wide array of reference materials, designers can craft
innovative, user-centered interfaces that build upon established de-
sign patterns and best practices [7, 9, 16, 25]. During inspirational
search process for UI design, designers often focus on functionali-
ties, problem domains, and visual styles [37]. These aspects offer
valuable insights into the design choices of UIs and assist design-
ers in comprehending how to fulfill user needs and expectations
effectively.

However, current UI retrieval methods are limited in their ability
to capture the nuanced semantic elements essential to an effective,
inspirational design process. Prior research [22, 52] have focused
on pixel-level retrieval methods, emphasizing visual similarities.
While these approaches are effective for identifying surface-level
design patterns, they often overlook in-depth semantic aspects such
as user interaction flow, target audience, and the emotional tone
of an application. Some computational methods [8, 31, 34] have
attempted to address these limitations by incorporating metadata
such as view hierarchies and text labels to enable more compre-
hensive browsing of UI semantics. However, the effectiveness of
these methods is constrained by the quality and availability of meta-
data, which can vary widely across different UI datasets and design
tools, limiting their scalability and applicability. Likewise, platforms
like Pinterest, Behance, and Dribbble are popular due to their vast
collections of design examples and are frequently used for visual
inspiration. However, these platforms primarily offer image-based
content with limited ability to filter by deeper semantic attributes,
making it challenging for designers to find contextually relevant UI
references [56]. UI curation platforms like Mobbin, which catego-
rize designs by app information, screen category, and UI elements,
offer some improvements but rely heavily on manual curation and
human annotation, providing limited scalability.

To address the limitations of existing UI search methods, we pro-
pose a novel approach that leverages a multimodal large language
model (MLLM) to extract semantic information directly from UI im-
ages without relying on additional metadata. MLLMs are powerful
models that can process and integrate information from multiple
modalities, such as images and text [53, 58]. By leveraging the
visual and textual features presented in UI images, MLLMs can in-
fer complex semantics and generate meaningful metadata without
manual annotation. By focusing on images without any additional

information, this approach significantly improves scalability, allow-
ing for seamless application across diverse UI datasets and design
tools. Given the potential of MLLMs to offer a richer and more
comprehensive understanding of design elements, this approach
provides a more scalable, flexible, and efficient solution compared
to traditional methods that rely on metadata. This approach enables
the generation of new, structured metadata from raw UI images,
expanding the possibilities for other types of UI understanding.

To explore the potential of this approach, we begin our research
by investigating the following key research questions:

RQ1 What UI semantics are most important for UI designers
during their search for inspiration?

RQ2 How accurately can a multimodal large language model
(MLLM) extract semantic elements from UI images?

RQ3 What are the advantages of semantic-based UI search
compared to traditional pixel or keyword-based retrieval?

To answer these research questions, we first conducted a for-
mative study with designers to identify the most crucial semantic
facets of inspirational search. Based on these findings, we devel-
oped a novel methodology for extracting and structuring semantic
information using MLLM. Utilizing these extracted semantics, we
designed S&UI, a semantic-based UI retrieval system. To assess the
effectiveness of our approach, we conducted a multi-stage evalua-
tion process. This evaluation included computational assessments
using established UI datasets to measure the accuracy of app and
screen category classification, UI element prediction, and screen
role understanding. We also performed human evaluations with
designers, combining quantitative ratings and qualitative insights
to validate the quality and usefulness of the extracted semantics.
Furthermore, we compared our semantic-based UI search method
to existing pixel and keyword-based retrieval methods. Through
this comparative study, we demonstrated the advantages of our
approach across multiple aspects, showcasing its effectiveness in
inspirational UI search through quantitative ratings and qualitative
insights from designer interviews.

Building on these efforts, we highlight three key contributions:

• We identify the key UI semantics that designers prioritize
during UI inspirational search through a formative study.

• We propose a novel MLLM-based approach for extracting
rich semantics directly from UI screen images and assess its
effectiveness through computational and human evaluations.

• We introduce S&UI, a semantic-based UI retrieval system,
and demonstrate its significant strengths over existing pixel
and keyword-based UI search methods in multiple criteria.

2 Related Work
2.1 Inspirational Search in UI Design Process
The user interface design process is a complex and iterative en-
deavor that involves multiple stages, from ideation to implementa-
tion [46]. This complexity drives designers to search for external
sources of inspiration that can inform their design decisions and
stimulate creativity [9, 16]. Herring et al. [19] highlighted the impor-
tance of examples as a source of inspiration in the design process,
and multiple studies [7, 26, 48] noted their role in enhancing design-
ers’ creativity and leading to more diverse and innovative solutions.
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During the inspirational search for UI design, designers need to
understand key semantic aspects, including functionalities, problem
domains, and visual styles [37]. However, current platforms strug-
gle to provide these aspects. Wu and Xu et al. [56] noted that current
creative platforms such as Behance and Dribbble provide vast col-
lections focusing primarily on visual style inspiration but lacking
UX-oriented examples. On the other hand, UI-specific platforms
like Mobbin lack options for visual style exploration and attempt to
address functionality by manually curating and annotating designs,
which inherently limits their scalability and comprehensiveness.
Due to these limitations, designers struggle to find examples that
meet their semantic requirements, which is particularly critical in
fast-paced design environments [45, 47]. Therefore, there is a need
for a new approach that identifies those semantics and supports
rich and extensible inspiration searches.

To address this need, this study explores the application of
MLLMs in UI inspiration search, leveraging their visual understand-
ing and contextual reasoning capabilities. By supporting semantic
analysis of UI elements—such as interpreting visual styles, domain,
and functional roles—this approach aims to enable a multidimen-
sional inspiration search, addressing gaps in existing methods.

2.2 Computational UI Retrieval
The field of computational UI understanding has seen significant
advancements in recent years, driven by the increasing availability
of UI datasets (e.g., Rico [13, 34] and its curated subset Enrico [29])
and the development of various deep learning techniques [23]. One
of the key tasks within this field is UI retrieval, which focuses on
efficiently identifying and recovering relevant user interfaces.

Several works have focused on learning latent semantic em-
beddings for UI components and screens, enabling more effective
retrieval and clustering of similar UIs. Deka et al. [34] introduced
a method for learning semantically meaningful embeddings of UI
components, allowing for efficient search and analysis of UI design
patterns. Bunian et al. [8] introduced VINS, a UI design search sys-
tem that utilizes wireframes or screenshots to query and retrieve
relevant UI examples. Huang et al. [22] proposed Swire, a similar
system that combines sketch-based retrieval with UI component
recognition to enable more flexible and intuitive search experiences.
Methods like Screen2Vec [31] generate embeddings that integrate
UI components, layouts, and texts for robust retrieval. These ap-
proaches enabled retrieval of semantically similar screens by train-
ing latent representation of semantics. However, they are utilizing
not only UI images but also metadata, such as view hierarchies,
which are often noisy [30] and inherently limit their scalability. Rec-
ognizing this challenge, recent machine learning approaches have
shown another direction. Park and Kim et al. [43] demonstrated
that large-scale foundation models like CLIP [44], trained without
relying on additional UI-specific metadata, can achieve superior
retrieval performance compared to traditional approaches. As a
stretching of this approach, GUIClip [52], a CLIP model fine-tuned
with UI datasets, also showed better retrieval performance than
prior methods.

However, most of the above approaches rely on embeddings,
which often fail to fully reflect human perception [28], and their fo-
cus on embedding similarity limits both interpretability and depth

of semantic understanding. Building on the strengths of foundation
models, the emergence of MLLMs has opened new possibilities.
Unlike previous methods that utilize latent semantic representa-
tions and their similarities, MLLMs can directly generate semantic
outputs from UI screenshots, enabling granular and explainable
retrieval. Our work builds upon these foundations while addressing
key limitations: reliance on additional annotations and restricted se-
mantic explanation. So, we investigate whether MLLMs can extract
rich semantic information directly from UI screenshots, enabling UI
design inspirational search that considers both functional context
and design intent beyond surface-level visual patterns.

2.3 Multimodal Learning and Language Models
in UI Design

The application of language models and multimodal learning tech-
niques in UI design has gained increasing attention in recent years.
While earlier works primarily focused on visual understanding
and retrieval using deep learning methods, the emergence of large
language models (LLMs) and vision-language models (VLMs) has
opened up new possibilities for assisting various aspects of the UI
design process.

Several studies have explored the use of multimodal learning for
UI-related tasks, such as generating natural language descriptions
and enabling conversational interactions. Li et al. [32] developed a
method for generating natural language descriptions of UI elements,
which can aid in accessibility and user understanding. Prior works
like Screen2Words [50] and UIBert [5] learned embeddings based
on the screen images, view hierarchies, and texts in the UI, enabling
the generation of natural language descriptions and the discovery
of semantic relationships. These approaches enabled a textual un-
derstanding of UI by offering descriptions. Recently,Wang et al. [49]
demonstrated the potential of LLMs for enabling conversational in-
teractions with mobile UIs, paving the way for users to accomplish
tasks through natural language dialogue.

More recent studies have begun to explore the application of
MLLMs on UI that go beyond the simple vision-language model. For
example, Ferret-UI [59] combines a customized visual sampler with
MLLM, enabling UI-related tasks such as referring, grounding, and
reasoning of user interfaces. Likewise, AppAgent [60] leverages an
MLLM to operate the user interface in a manner similar to human
users, enabling autonomous task execution.While these approaches
demonstrate the potential of MLLMs in UI understanding, they are
not specifically tailored for UI design tasks. Furthermore, most of
the above approaches require not only images but additional UI
metadata (e.g., types of UI elements or coordinates) at the time
of inference. This reliance on metadata makes it impractical to
search for UI design inspiration, as the vast majority of inspiration
materials lack structured UI metadata.

This study addresses the challenge of effectively capturing and
leveraging the semantic elements crucial for designers during inspi-
rational searches and creative processes, using only screen images.
We propose a novel MLLM-based approach for semantic extraction
and retrieval, enabling designers to capture the nuanced inten-
tions underlying their work. Our study represents a step forward
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by demonstrating the utility of MLLMs for extracting designer-
oriented semantic elements vital for inspirational UI design search,
using only screenshot images.

3 Formative Study
We conducted a formative study to understand how UI designers
search for design inspiration and the types of sources, processes,
and methods they rely on. This study focused on identifying the
key semantic elements designers consider important during their
inspirational search (RQ1). Our goal was to gather insights into
how designers navigate the search process and the semantics they
emphasize, which will later serve as a basis for extracting these se-
mantic elements from an MLLM and establishing design principles
to guide the development of an effective search system.

Table 1: Formative Study Participants: Six participants were
recruited to capture a broad range of perspectives. YOE de-
notes years of experience. For students, their number of com-
pleted UI design projects is noted.

ID Professional Status YOE
/ # projects

Age Gender

P1 Product, UI/UX designer 8 33 M
P2 Product, UI/UX designer 8 32 F
P3 Product, UI/UX designer 5 29 F
P4 Senior student 2 / 4 24 F
P5 Junior student 2 / 4 23 F
P6 Sophomore student 1 / 3 23 F

3.1 Participants and Procedure
To gain a comprehensive understanding of UI inspirational search
practices, we recruited six participants, balancing experienced pro-
fessionals and emerging designers. This sample size was chosen
based on prior research, which indicates that it effectively captures
recurring themes and meaningful insights within a focused qual-
itative study [18, 39]. Balancing expertise levels ensured a broad
range of perspectives, which enriches the depth and applicability of
findings [12, 21]. This diversity allowed us to capture general needs
from early-career designers to experienced practitioners, providing
a more comprehensive understanding of design practices. The final
participants included three expert UI designers and three design
major students with UI design experiences, as shown in Table 1.

We conducted semi-structured interviews lasting 1 hour each.
The interviews were designed to be conversational and exploratory,
allowing participants to share their experiences and insights freely.
We began each interview by asking participants to walk us through
their typical design process, paying particular attention to how they
search for inspiration and reference materials. We then investigated
their use of existing UI search tools more deeply, encouraging them
to share specific examples of successes and frustrations.

All interviews were audio-recorded with participant consent
and later transcribed for analysis. We employed thematic analy-
sis, iteratively coding the transcripts to identify recurring themes,
challenges, and desired features. The authors conducted semantic
coding of the interview data, organizing insights into key categories

relevant to the design process. This process allowed us to distill
key insights that informed our understanding of essential semantic
elements for UI search and inspiration.

This study received approval from the Institutional Review Board
(IRB). Participants were fully informed of the study’s purpose and
procedures, and their consent was obtained prior to participation.
The participants received compensation equivalent to 15 USD for
their time and contribution.

3.2 Key Insights from Interviews
3.2.1 UI Design Process and Inspirational Search. Participants con-
sistently highlighted the importance of the Double Diamond design
process [11], which involves both the problem definition and the
solution exploration phases. During the process, designers focus on
understanding user needs, defining core features, and considering
the target audience of the app (P1, 2, 4-6). One participant (P2), a
designer with eight years of experience, remarked:

“In the discovery phase, we focus on understanding the
user and defining the features of the app. Knowing the
target audience shapes much of the design process."

This reflects the significance ofApp Category and Target Audience
in the early design stages, indicating the need for tools that allow
designers to search for UIs based on these factors.

During the solution exploration phase, designers begin wirefram-
ing and developing the visual aspects of the interface. A common
challenge noted by multiple participants was finding screens that
served similar functional roles while maintaining their design styles.
As P6 explained:

“I search for screens with a similar function because it
helps me figure out the layout and elements I need."

Including this, multiple participants emphasize the importance of
Screen Roles as a key semantic in UI search tools, helping designers
align their screens with the intended function within the user flow
(P2, 3, 5, 6).

3.2.2 Sources of Inspiration and their Limitations. Designers fre-
quently seek inspiration from established platforms to assist them
in their work, such as Pinterest, Behance, and Dribbble. However,
most participants were frustrated with the lack of filtering options
that account for UI-related elements like app and screen informa-
tion, as Wu and Xu et al. [56] highlighted in earlier research. As P2,
one experienced designer commented:

“It’s hard to find screens that match my app’s category
or the role of a specific screen in the user flow. Most
platforms just give me visually similar designs, but the
context is missing."

This highlights the necessity of incorporating application and screen
level semantics (e.g., App Category and Screen Role) into UI search
tools, enabling designers to locate references that align with their
project’s functional requirements. While most participants utilized
UI-specific platforms like Mobbin to get inspiration for app flows
and screen functionalities, they noted its lack of support for filtering
based on visual elements such as Mood or emotional tone (P1-5). P4
explained:
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“I need to find UIs that match the mood I want for my
app—whether it’s professional or playful. But finding
something that fits that tone is hard."

This underscores the need for a search tool that allows designers
to filter UIs by Mood, a crucial component of the visual design of
apps.

3.2.3 Challenges with Current Search Methods. A common issue
voiced by participants was the inefficiency of existing UI search
methods, which rely heavily on simple keyword-based queries (P1-
3, 5, 6). P3, with five years of experience, shared their frustration:

“Current tools only let you search with keywords like
‘login screen UI,’ but they don’t give you the deeper
context—like the app’s audience or the screen’s role. It
takes forever to find the right match."

This highlights the need for a more semantic-driven search sys-
tem, where designers can search not only by textual information or
visual appearance but also by meaningful attributes such as Target
Audience, Screen Role, and App Category.

Participants also emphasized the time-consuming nature of man-
ually filtering through search results to find the right inspiration
(P1, 4-6). As P6 explained:

“I often have to go through tons of irrelevant results to
find something that fits my project. It’s a huge waste of
time."

This points to the importance of a UI search system that can auto-
matically narrow down results based on key semantics, reducing
the manual effort required to find relevant designs.

3.3 Key Semantics Derived from the Study
Through semantic coding, we identified several key semantics that
designers consider important when searching for inspiration. We
found several UI semantic elements that were consistently men-
tioned across participants, and these elements were organized into
four main levels: Application (App), Screen, Composition, and Visual
Design level. At the app level, we identified the app category, de-
scription, similar apps, and target user information. The screen level
semantics included screen category, role, and navigation context,
while the composition level focused on UI elements and action items.
The visual design level encompassed color (scheme and palette)
and mood considerations.

To ensure our semantics reflect widespread designer needs, we
derived elements mentioned by five or more participants, exclud-
ing less frequently mentioned elements like typography, visual
style system (e.g., material design, glassmorphism), iconography,
and UX writing tone. Below, we detail each semantic level and
its constituent elements, supported by designers’ quotes from our
interviews.

3.3.1 Application Level Semantics.

• App Category and Description: Designers often reference
UIs within a specific app category, such as social media, e-
commerce, or productivity, along with descriptions of the
app’s purpose and features. This allows them to find designs
that align with the functional and aesthetic expectations of
the app type.

• Target User: The intended user demographic—whether pro-
fessionals, children, or older adults—plays a significant role
in shaping design decisions. Designers expressed a need to
search for UIs that cater to specific audiences.
“When I design for older adults, I need to find UIs that are
accessible and easy to use. But it’s hard to filter for that
in most search tools." (P3)

• Similar App: Designers often seek inspiration from apps
with similar functionality or design principles. Being able to
find UIs from apps in the same domain helps ensure their
designs align with industry standards and user expectations.
“When designing a new app, I always look at top apps
in the same category to see how they handle common
features and interactions." (P1)

3.3.2 Screen Level Semantics.

• Screen Category and Role: Designers often look for UIs
based on the functional category and specific role of a screen
within the app, such as login screens, dashboards, or profile
pages. These semantics are particularly important during
wireframing, where the structure and layout are closely tied
to the screen’s purpose.

• Navigation Context: Participants noted the importance of
understanding how a screen fits into the overall user flow,
including what screens come before or after it. This helps
create cohesive designs that guide users smoothly through
the app.
“It would be helpful to know what screens come before or
after the one I’m designing, so I can better plan the user
flow." (P5)

3.3.3 Composition Level Semantics.

• UI Elements: Designers frequently search for specific UI el-
ements like buttons, input fields, and navigation bars, which
play a key role in the overall usability and functionality of
the app. The ability to filter search results based on these
components was a widely requested feature.

• Action Items: The visibility and emphasis of actionable
elements, such as buttons and links, are critical for ensuring
user engagement. Designers expressed the need to find UIs
that make these elements stand out clearly.
“Actionable elements like buttons need to be obvious, and
I’m always checking how other apps highlight them.” (P2)

• Layout: Designers often reference layouts during wirefram-
ing to understand how UI elements are arranged on a screen
and how they interact to support functionality and aesthetics.
This helps ensure the composition aligns with the intended
user flow and design goals.

3.3.4 Visual Design Level Semantics.

• Color: The color scheme and palette play a crucial role in
setting the visual tone of the app. Designers need to find UIs
that employ colors effectively to convey the right mood and
ensure accessibility.
“Color is so important for creating the right feel. I’m al-
ways searching for examples of color schemes that fit the
mood I’m going for." (P5)
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Table 2: Categorized breakdown of key semantic elements in mobile UI design, detailing Application, Screen, Composition, and
Visual Design levels, along with their descriptions for a semantic-based retrieval.

Level Semantic Description

Application

App Category The type of application (e.g., social, productivity, or entertainment).
App Description A brief overview of the app’s purpose, features, and functionality.
Similar App Examples of apps with similar functionality or design principles.
Target User The primary audience the app is intended for.

Screen

Screen Category The type of screens (e.g., login, dashboard, or profile screen).
Screen Role The specific purpose of the screen, similar to screen summary.
Next Screen The screen users will navigate to after completing possible actions.
Previous Screen The screen from which users arrived, offering context or continuity.

Composition
UI Elements Specific UI elements such as buttons, text fields, or images.
Action Items Interactive elements like buttons or links that prompt user actions.
Layout The arrangement of UI elements on the screen.

Visual Design
Color Scheme The color combinations used across the UI.
Color Palette The specific colors chosen for UI elements.
Mood The emotional tone conveyed by the app’s design.

• Mood: Participants emphasized the importance of finding
UIs that convey the right emotional tone or visual mood for
their project. The ability to filter UIs bymood helps designers
create interfaces that align with the brand’s identity or the
app’s goals.
“The mood of the app is key—whether it’s serious and
professional or fun and playful. I need UIs that match that
mood." (P4)

By incorporating these semantics, our MLLM-based search sys-
tem will allow designers to find more relevant and contextually ap-
propriate UI designs, addressing the limitations of current keyword-
based tools. This will enhance the search experience by enabling de-
signers to filter results based on deeper, more meaningful attributes,
resulting in a more efficient and targeted inspirational search pro-
cess. In addition to the insights gathered from our study, we also
incorporated widely accepted semantic elements commonly used
in the UI design community. This comprehensive approach ensures
that our system reflects both the nuanced needs of designers, as
highlighted in our interviews and the established practices within
the industry. Table 2 provides a structured summary of the key
semantics derived from our study, categorized into app level, screen
level, composition, and visual design attributes. These semantics
will form the foundation of our approach to semantic-driven UI
retrieval, addressing the limitations of existing tools.

3.4 Deriving Design Principles
Building on the findings from the formative study, we established
three key design principles to guide the development of a semantic-
driven UI search system that addresses the challenges and needs
highlighted by designers.
DP1 Considering both Functionality and Aesthetics. Existing in-

spiration platforms often prioritize aesthetics but overlook
functional aspects of UI, while UI-specific platforms focus on

functionality but lack support for aesthetics like mood and
tone. Designers focus on functionality in the early stages
and shift to aesthetics in later stages, but current systems fail
to support both aspects effectively. This lack of integration
of current tools hinders the iterative design process as de-
signers struggle to revisit and refine their work holistically.
Supporting both functionality and aesthetics in an integrated
manner allows for richer inspiration at each stage, enabling
designs that are both effective and visually compelling.

DP2 Flexible Query for Adjusting Priorities. Our formative study
revealed that designers’ search priorities shift across differ-
ent design stages, focusing more on functional elements in
the early stages and on aesthetic aspects in wireframing and
visual refinement. This principle emphasizes the need for a
search approach that adapts to shifting priorities, allowing
designers to emphasize certain semantics while maintaining
a level of consistency in the overall search results.

DP3 Adaptive and Exploratory Search. Designers emphasized the
iterative nature of their search process and the difficulty of
articulating precise search keywords to find relevant refer-
ences. This highlights the need for iterative query refinement,
allowing designers to adjust their searches dynamically. Ad-
ditionally, surfacing the semantics of search results can help
overcome the limitations of keyword-based searches, facil-
itating a more adaptive and exploratory discovery process
during inspirational searches.

These principles address the challenges identified in the forma-
tive study, serving as the foundation for our system design. By
embedding these principles into the system design, we aim to en-
hance both the efficiency and creativity of the inspirational search
process for UI designers.
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4 Methods
This section outlines our methodology for extracting semantics
from mobile UI screenshots using a multimodal large language
model (MLLM). We describe our approach to structuring and ex-
tracting key semantics and explain how these semantics are lever-
aged to build a semantic-based UI search system.

4.1 Semantic Extraction
We adopted standardized definitions and techniques for various
semantics and structured prompting strategies to extract key seman-
tics using an MLLM. The following sections detail how we defined
semantic structures and implemented the extraction process.

4.1.1 Defining Categorical Semantics. We used widely accepted
industry-standard sources in mobile UI design to establish consis-
tent definitions for key areas of categorical semantics and align
with designers’ everyday workflow. For the app category, we uti-
lized the categorical semantics from the Apple App Store1, which
provides a comprehensive and standardized classification system
for mobile apps. For the screen category, we adopted the mobile
screen categories from Mobbin, a curated UI repository resource
frequently used by UI designers, to provide a practical and com-
prehensive taxonomy. We also considered using screen topics from
Enrico [29] as an alternative but chose topics from Mobbin as it
offered finer granularity. Lastly, for UI elements, we categorized
UI components (e.g., buttons, text fields, navigation bars) using
Mobbin’s classification. Given the potential for multiple labels to
apply to the same screen, semantic outputs were structured in a
list format to accommodate overlapping categories.

4.1.2 Handling Layouts and Visual Design. For more complex de-
sign attributes, such as layout and mood, we curated semantic
definitions from existing design literature and filtered them to en-
sure relevance to mobile interfaces. For the layout, we adopted UI
layout guides from online material2, curating a set of layouts spe-
cific to mobile UI and excluding those intended for desktop or other
environments. We selected guideline articles because describing
intricate layouts textually is inherently challenging [36], and these
articles offer semantically meaningful textual interpretations of
the layout. For mood extraction, we referenced Nielsen Norman
Group’s guidelines on moodboard [38] to provide a robust set of
mood keywords and filter those relevant to mobile design. For col-
ors, we adopted a hybrid approach. Color is a critical visual design
component, but current LLMs often struggle with precise color ex-
traction [51]. To address this issue in the context of color schemes,
we leveraged LLMs to generate initial color scheme categories. This
approach takes advantage of the extensive knowledge of the LLM
of well-known color schemes, allowing it to generate schemes that
align with the general design intent. For the color palette, inspired
by a previous study [49], which adopts HTML format for LLMs’
UI understanding, we presented color information using HTML
color names. We added structure to multi-faceted attributes such
as mood and layout by assigning concise keys to each attribute
where needed. For example, a screen’s mood can be represented by
a key-value pair, where the key is the mood, and the value provides

1https://www.apple.com/app-store/
2https://devsquad.com/blog/user-interface-layouts

a brief explanation of its design implications (e.g., “playful: A simple
and straightforward design facilitating focus on habits.” ). Using keys
helps organize attributes for faster lookup, while detailed descrip-
tions support both embedding-based searches and the adaptive and
exploratory search principle. Table 3 provides an overview of the
structured output formats for all key UI semantics.

Table 3: Output formats for key UI semantics. The table out-
lines how semantic attributes are structured into standard-
ized formats for clarity and usability in design tasks.

Semantic Output Format

App Category List of app categories
App Description Brief description of application
Screen Category List of screen types
Screen Role Brief description of screen purpose
Target User Key-value pairs (user types: descriptions)

Similar Apps List of app names with descriptions
UI Elements Key-value pairs (elements: descriptions)

Layout List of layout types with explanations
Action Items Key-value pairs (UI elements: action)

Next Screen Descriptions of potential next screens
Previous Screen Descriptions of potential previous screens
Mood Key-value pairs (moods: descriptions)

Color Scheme Key-value pairs (schemes: descriptions)

Color Palette Key-value pairs (elements: HTML color)

4.1.3 Prompting Strategy for MLLM. To achieve optimal results
from the MLLM, we implemented a detailed prompting strategy
following established prompt engineering principles that include
five key components (Figure 2): Assistant Persona, Task Instruc-
tion, Feature List, Feature Definition and Instruction, and Response
Form. Each component was encapsulated in an XML format to
enhance the efficiency of the prompt execution [3]. The Assistant
Persona component defined the MLLM as a mobile application
design expert specializing in interpreting mobile UI screenshots
and identifying detailed characteristics. This approach is based on
the role prompting technique [1, 57], which effectively frames the
model’s responses within a specific context and expertise level.
This persona was designed to draw insights from screenshots and
provide expert-level analysis tailored to the specific context pre-
sented. The Task Instruction component outlined the assistant’s task
as understanding the screen’s content, extracting text, identifying
UI elements’ roles and positions, and recognizing relationships be-
tween them. We provided clear and specific instructions that are
fundamental to effective prompt engineering, guiding the model’s
focus and output [1, 2, 17]. The Feature List component included
a comprehensive set of semantic attributes as identified earlier.
The Feature Definition and Instruction component provided detailed
definitions and instructions for extraction for each feature. The
model was instructed to respond with appropriate values within
the predefined categories for categorical semantics. For example,
in the case of UI elements, the model was tasked with identifying
each element’s role, while for the next and previous screens, it
was guided to align its output with the inferred screen role. For
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Semantic OutputPrompt

app_category:

  - Navigation

  - Travel

  - Lifestyle



app_description:

"An app for discovering parks, trails, and 
outdoor destinations, providing users with 
detailed information on locations, views, and 
difficulty levels of hikes."



similar_app:

  - AllTrails: "A hiking and trail exploration 
app with a focus on user reviews and trail 
data."

  - Komoot: "Navigation for outdoor activities 
such as hiking, cycling, and mountain biking."



target_user:

  - Outdoor enthusiasts: "People interested in 
exploring hiking trails and parks."

  - Casual travelers: "Tourists looking for 
nearby scenic spots."

  ...



screen_category:

  - Browse / Discover

  - Map



screen_role:

"This screen allows the user to browse nearby 
parks or hiking locations, filter results by 
specific criteria (e.g., epic views, 
wildflowers), and access additional information 
like trail difficulty, length, and estimated 
time."



next_screen:

  - "Trail detail screen showing a detailed map, 
reviews, and more information about the specific 
trail."

  - "Saved screen where users can view trails 
they have bookmarked."



previous_screen:

  - "The home screen or a previous filtered 
search for parks or trails."

  - "A list or map-based screen showing user-
specific recommendations or saved trails."

ui_elements:

  - Button: ["Nearby", "Epic views", "Wildflowers"]

  - Search Bar: "Top bar for searching parks and trails"

  - Card: "Displays specific trails with images, title, 
location, difficulty rating, distance, and estimated time"

  ...



action_items:

  - Button:

      - Nearby: "Filters results to show nearby parks and 
trails"

      - Epic views: "Filters results to show trails with 
scenic views"

      - Wildflowers: "Filters results to show trails with 
wildflowers"

  - Search Bar:

      - Search: "User can search for specific parks or 
locations"

  ...




layout:

 - Card-based: "Each trail is represented by a card with 
an image, details, and interactive elements like saving 
and viewing the map."

  - Map-based: "Maps are integrated into trail cards, 
allowing users to see the route visually."

   ...



mood:

  - Calming: "The use of nature images and soft, earthy 
tones creates a calming atmosphere, suited to outdoor 
exploration."

  - Clean: "The design is minimalist and free of clutter, 
emphasizing functionality and ease of navigation."



color_scheme:

  - Light Mode: "The app uses a light background with 
muted tones for readability and a nature-themed vibe."



color_palette:

  - Primary Color: DarkOliveGreen

  - Secondary Color: ForestGreen

  - Elements:

      - Filter Buttons: DarkOliveGreen

      - Map Icon: LimeGreen

      - Star Rating: GoldenRod

YAML Format

Assistant Persona

Features

Instruction

Feature Definition

& Instruction

Response Form

Figure 2: Illustration of prompt and semantic output for mobile UI semantic extraction using multimodal LLM. The left panel
displays our prompt concept (the mobile UI screenshot and additional prompts (i.e., assistant persona, instruction, feature
list, feature definition & instruction, and response form), and the right panel presents the structured YAML-formatted output
detailing key semantic attributes extracted by GPT-4o.

the color palette, the assistant was prompted to analyze the color
distribution first and extract the primary and secondary colors. It
was also instructed to output the colors of major UI components
in HTML Color Name format, ensuring clarity and consistency in
the response. This detailed approach to definitions and instructions
aligns with the principle of providing comprehensive context to
improve the model’s understanding and performance [2, 14, 42].
Finally, the Response Form component specified the output format.
We chose the output format as YAML, which was selected for its
human readability and ability to reduce token counts up to 50% [35]
by eliminating unnecessary characters like braces and reducing
blank space indentation of JSON.

4.1.4 Model and Configuration. WeemployedOpenAI GPT-4o [41],
one of the most competitive MLLM models, to extract key seman-
tics from mobile UI images. During our preliminary testing, we
evaluated several publicly accessible MLLMs available in our re-
search period, though the options were just a few. Among these,

GPT-4o demonstrated superior performance in understanding UI
concepts and generating consistent semantic descriptions, making
it the optimal choice for our research.

To assess the MLLM’s ability to understand UI semantics (RQ2),
we chose a zero-shot approach, not providing the model with any
prior UI examples or semantic labels, for the following reasons. First,
this approach allows us to evaluate MLLMs’ inherent capability
to grasp UI semantics without the confounding effects of addi-
tional training or example data. Second, fine-tuning or few-shot
approaches would require extensive human-labeled datasets, but no
well-structured data exists for the semantic attributes we identified.
Moreover, the breadth of semantics cannot be adequately addressed
with only a few shots. A detailed evaluation of the model’s semantic
extraction capability in this context is presented in the computa-
tional and human evaluation sections.
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Figure 3: The query and retrieval method illustrates how user-specified semantics and weights are processed to retrieve relevant
UI designs from the database. The system computes cosine similarity scores between the query and the designs, considering
user-adjusted semantic weights to prioritize certain elements.

4.2 S&UI: Semantic-based Retrieval System
4.2.1 SearchQuery and Retrieval Method Design. We designed a
query system that enables users to input their desired semantics and
retrieve the most relevant UI designs from the database. The search
query input consists of user-specified semantics, where users can
select the semantics they want to search for and provide a textual
description for each semantic, enabling a flexible combination of
functional requirements and aesthetic intent (DP1). To measure the
similarity between the user query and the UI designs in the data-
base, we employed the OpenAI text-embedding-3-large model
for text embedding. As shown in Figure 3, we calculated the cosine
similarity between the query and semantics in the database. Guided
by the principle of flexible queries for adjusting priorities (DP2), in
cases where multiple semantics are involved, users can adjust the
weight of each semantic to reflect their importance, and a weighted
sum is applied to calculate the overall similarity score. To construct
the search database, we extracted text embeddings for all UI seman-
tics in each screenshot. For semantics in the key-value format in the
YAML output, we represented the semantics by including the key
along with the value description. This approach ensures that the
similarity search not only considers the textual description in the
value but also reflects the specific semantic represented by the key.
Furthermore, aligned with our principle of supporting functionality
aspects of UI (DP1), we developed special queries to address this
requirement. While the regular queries focus on finding UI designs
similar to the user-specified semantics, these special queries are
designed to retrieve the next or previous screens in the user flow.
This functionality is made possible by the LLM’s ability to infer the
next and previous screens. The special queries are implemented by
calculating the similarity between the screen roles in the database
and the inferred next or previous screen semantics from the query.

4.2.2 Interactive Search System. We developed an interactive mo-
bile UI search system, S&UI, that embodies our design principles
through integrating query formulation, result display, and iterative
refinement to facilitate user interaction within our semantic-based
retrieval methods, as illustrated in Figure 4.

The search panel enables users to define their desired semantics,
providing a customizable blend of functional needs and visual pref-
erences (DP1). Users can freely add or remove semantic attributes,
input natural language descriptions for specific design require-
ments, and utilize dropdowns for predefined categorical semantics.
To adjust search priorities (DP2), the system allows users to assign
weights to each semantic, visually represented by a dynamic bar
chart above the search button. This functionality helps designers
fine-tune their queries and prioritize specific UI semantics. Once
the query is submitted, the backend processes the selected seman-
tics and weights to retrieve the most relevant UI designs from the
database. The system uses pre-computed text embeddings of the
UI semantics for efficient similarity calculation and ranking.

The results panel presents retrieved UI designs in a structured
format, with overall matches considering all provided semantics
at the top. Below, individual semantic search results are shown,
ranked by similarity scores for each facet. To support exploratory
and adaptive search (DP3), clicking on a result image opens a screen
detail panel that displays the extracted semantics for the screen.
This detailed view, as shown in the bottom part of Figure 4, allows
designers to examine the semantic attributes in-depth, assessing
the design’s suitability for their project. To facilitate the iterative
nature of design exploration, the import button in the detailed view
enables users to incorporate the semantics into subsequent queries,
supporting an iterative and exploratory design process. We also
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Search  Panel

Adjust weight 
to fit needs

CLICK

to open Screen Detail

Add semantic 
descriptions to 
refine search

Search by  
key UI semantics

Result Panel

Relevant 
UI Screens 
retrieved from 
semantic query

Result Panel

Import

Find Next & Previous

Relevant 
UI Screens 
retrieved from 
semantic query

Import 
semantic result 
to refine and iterate

Explore screens  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Figure 4: The S&UI system interface. The system enables designers to search UI screens using key UI semantics, such as app
category, mood, and screen role. The Search Panel allows the addition of semantic descriptions and weight adjustment according
to user needs. The Result Panel displays relevant screens retrieved based on semantic queries. In the Screen Detail Panel,
designers can explore detailed screen semantics, iterating and refining their search with the Import feature. The Find Next &
Previous functionality helps find screens based on estimated user flows, enhancing designers’ contextual understanding during
the design inspiration process.
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integrated this feature into the search panel to support a query-
by-example approach for exploratory searches, enabling users to
upload their own UI images. Upon image upload, the system em-
ploys the MLLM to extract semantics, which designers can review
and import into the search panel to create structured semantic
queries.

5 Computational Evaluation
To assess the effectiveness of our proposed method, we conducted
a two-step evaluation process. In the first step, we quantitatively
measured UI semantic understanding capability that could be ob-
jectively measured using existing UI datasets. In the second step,
detailed in Section 6, we conducted human evaluations with UI
designers, focusing on two aspects: (1) assessing the quality of
extracted UI semantics and (2) conducting a comparative study
where designers conducted searches for design inspiration using
our retrieval system S&UI and an existing tool. This dual evaluation
approach allowed us to understand how the extracted semantics
influence the overall search experience.

In this section, to address RQ2 on the MLLM’s semantic ex-
traction capability, we first conducted computational quantitative
evaluations using established metrics and datasets where objective
measurement is possible. This involves evaluations on app and
screen category classification, UI element prediction, and screen
role understanding. We utilized relevant existing datasets and es-
tablished baseline models for measuring capability. For these evalu-
ations, we utilized the same MLLM (GPT-4o) and configuration as
previously mentioned in the Section 4.1.4, to ensure the assessment
reflects the model’s inherent semantic understanding capabilities
without confounding effects.

5.1 App and Screen Category Classification
We utilized the Enrico dataset [29], which contains 1,460 UI screen-
shots annotated with screen topics and application metadata. We
mapped the screen topics to our defined screen categories and used
the application metadata to evaluate the accuracy of app category
extraction. As a prior study [43] revealed that foundation mod-
els like CLIP [44] outperform traditional UI-specific models (e.g.,
Screen2Vec [31], Deka et al. [13]) in retrieving UI screens (based on
the app, screen type, and content similarity) tasks, without needing
UI structure or other metadata. Based on these findings, we focused
our comparison on state-of-the-art vision foundation models, in-
cluding CLIP models (ViT-B/32 (base) and ViT-L/14@336px (most
capable)), and GUIClip [52], a ViT-B/32 based CLIP model that fine-
tuned on UI datasets for retrieving similar UI screens.We performed
zero-shot classification using these models, following the methodol-
ogy outlined in prior studies [24, 43, 52]. Specifically, both GPT-4o
and the baseline models were provided with identical screen and
app category labels from Enrico for classification. To maintain con-
sistency with baseline models, we prompted simply without other
prompt strategies but labels and instructions to output the top-3
categories sorted by confidence. As there are semantically similar
categories which have overlapping functionalities (e.g., FORM and
LOGIN for screen category; SOCIAL, COMMUNICATION and DATING
for app category), we measured top-1 and top-3 accuracy to test
the models’ ability to handle semantically overlapping categories.

As shown in Table 4, GPT-4o significantly outperformed the base-
line models in both screen category and app category classification,
achieving a top-1 accuracy of 59.21% and 58.33%, respectively, com-
pared to the baselines, which achieved 36.24% and 39.95%. Moreover,
GPT-4o’s top-3 accuracy reached 78.83% for screen categories and
75.26% for app categories, outperforming the baseline performances
of 58.32% and 60.57%, respectively. These results demonstrate that
MLLMs can achieve even stronger UI semantic understanding than
vision foundation models like CLIP, which have already established
significant improvements over traditional UI-specific approaches.
To understand the performance result more deeply, we conducted
a detailed category-wise experiment comparing with the most sub-
stantial baseline for each task, as shown in Figure 5. The results
reveal that GPT-4o outperforms in most categories. Interestingly,
GUIClip showed higher accuracy in some categories like TUTORIAL
and SEARCH; we assume that this is likely due to labeling ambigui-
ties in the Enrico dataset. TUTORIAL is explained as “Onboarding
screen" can be confused with BARE and LOGIN screens, likewise the
“Search engine functionality" label of SEARCH may not accurately
represent basic search interface screens. Despite these exceptions,
the results demonstrate that MLLMs can achieve more substantial
UI screen and application understanding than baselines.

5.2 UI Element Prediction
We used the CLAY dataset [30], which contains annotated UI ele-
ments for a subset of the Rico screenshots. As we focus on inspira-
tional search rather than precise element bounding box prediction,
we evaluated the model’s ability to identify the presence of different
UI element types within a screen. We provided GPT-4o with the
CLAY UI element labels and descriptions, instructing the model
to extract only the specified UI element semantics in a zero-shot
manner. We excluded the ROOT, BACKGROUND, and CONTAINER labels
from the evaluation as they do not represent typical UI elements,
and also excluded PICTOGRAM as the label is confusing with icon and
illustration. The evaluation was conducted on the 1,318 screenshots
present in both the Enrico and CLAY datasets. GPT-4o achieved a
weighted average precision of 0.661, recall of 0.703, and 𝐹1-score of
0.681 across all UI element types. All metrics are weighted by the
number of each label in the dataset.

While these results demonstrate MLLM’s ability to identify vari-
ous UI elements without any task-specific fine-tuning, the absolute
performance metrics indicate that there is still room for improve-
ment. The model’s performance is likely limited by several factors,
including the zero-shot nature of the task and the inherent ambigu-
ity in some of the UI element descriptions provided by the CLAY
dataset. For instance, the distinction between TEXT and TEXT_LABEL
may not be clear based on their textual descriptions alone, which
could lead to inconsistencies in predictions.

5.3 Screen Role Understanding
Previous research has explored extracting summaries and descrip-
tions from UI screens. The Screen2Words dataset [50] provides
screen summaries, and studies have shown that LLMs can generate
richer results when given screen information in textual form [49].

However, the potential of MLLMs in extracting screen descrip-
tions using UI screen images has not been investigated. Thus, we
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Table 4: Zero-shot classification accuracy comparison of baseline models (CLIP models) and MLLM (GPT-4o) on Screen and
App Categories. GPT-4o significantly outperforms baseline models in both top-1 and top-3 accuracy, demonstrating superior
semantic understanding of UI screen and app categories.

Screen Category (20 classes) App Category (31 classes)

CLIP

ViT-B/32

CLIP

ViT-L/14@336px
GUIClip GPT-4o CLIP

ViT-B/32

CLIP

ViT-L/14@336px
GUIClip GPT-4o

Top-1 Accuracy 26.27 29.02 36.24 59.21 31.01 39.95 35.65 58.33
Top-3 Accuracy 55.09 55.57 58.32 78.83 49.91 60.57 56.70 75.26

LIST
LOGIN

GALLERY

FORM
M

ENU

TUTORIAL

NEW
S

BARE
MODAL

SETTINGS

PROFILE

M
EDIAPLAYER

CHAT
SEARCH

EDITOR

TERMS

CAM
ERA

MAPS
OTHER

DIALER

0

50

100

150

200

250

C
ou

nt

Number of Correct Screen Category Predictions

SHOPPING

EDUCATION

NEW
S AND MAGAZINES

SPORTS

HEALTH AND FITNESS

TRAVEL AND LOCAL

SOCIAL

FOOD AND DRINK

W
EATHER

MUSIC AND AUDIO

FINANCE

COM
MUNICATION

BOOKS AND REFERENCE

ENTERTAINM
ENT

BUSINESS

AUTO
 AND VEHICLES

HOUSE AND HOM
E

PARENTING

M
EDICAL

DATING

LIFESTYLE

MAPS AND NAVIGATION

COMICS

ART AND DESIGN

TOOLS

BEAUTY

PRODUCTIVITY

VIDEO
 PLAYERS

EVENTS

PERSONALIZATION

GAM
E BOARD

0

10

20

30

40

50

60

70

80

90

100

C
ou

nt

Number of Correct App Category Predictions

GPT-4o

CLIP ViT-L/14@336px

Ground Truth

GPT-4o

GUIClip

Ground Truth

Figure 5: Comparison of Correct Screen and App Category Predictions: The top chart compares GPT-4o and GUIClip across 20
screen categories, while the bottom chart contrasts GPT-4o and CLIP over 31 app categories. Top-1 predictions are highlighted,
with top-3 shown semi-transparently. GPT-4o outperforms baseline methods in both cases.

compare the screen role (description) extracted by GPT-4o with
the Screen2Words dataset to evaluate the richness of the generated
explanations in a zero-shot manner. To assess the quality of the
screen descriptions generated by GPT-4o, we calculated the syn-
tactic dependency complexity and Part-of-Speech (POS) diversity
scores using spacy [20]. Syntactic dependency complexity mea-
sures the intricacy of the syntactic structure, while POS diversity
evaluates the variety of lexical types used in the descriptions. As
the Screen2Words dataset contains five descriptions per screen, we
compared the average scores and the highest-scoring items from
the Screen2Words with the screen role extracted by GPT-4o.

As shown in Figure 6, the results indicate that GPT-4o generates
more complex and diverse descriptive text compared to both the
average and highest-performing items in the Screen2Words dataset.
The higher scores for syntactic dependency complexity and POS
diversity indicate that GPT-4o effectively captures a wider range of
syntactic structures and richer lexical repertoires, which leads to
more informative and exhaustive screen descriptions. Our findings
suggest that MLLM can generate more detailed and comprehensive
screen descriptions than traditional methods by utilizing visual
information from UI screen images.
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Figure 6: Box plots comparing the syntactic dependency complexity (left) and POS diversity scores of screen descriptions (right)
from the Screen2Words dataset (average and best) and GPT-4o. GPT-4o generates more complex and diverse descriptions than
the Screen2Words dataset, as indicated by the higher scores in both metrics.

6 Human Evaluation
To assess the quality and usefulness of the semantics extracted
by the MLLM from human perspectives (RQ2) and evaluate the
advantages of our semantic-based retrieval system (RQ3), we con-
ducted a two-part human evaluation with UI designers. To address
RQ2, Section 6.2 involves UI designers assessing the quality of
each extracted semantics. This offers insight into the quality and
usefulness of the MLLM-extracted semantics. Section 6.3 tackles
RQ3 by employing both our semantic-based search tool and a base-
line for realistic inspiration-finding tasks. Analyzing the ratings
and feedback from both systems reveals the advantages and user
experience benefits of our approach.

6.1 Participants
We recruited 10 participants (4 male, 6 female, denoted E1 - E10)
from designer communities and through word-of-mouth, including
students, novice designers, and those with professional design ex-
periences, as detailed in Table 5. The number of participants and
their diverse expertise are considered to align with formative study
and practices in computational UI research, where similar studies
have included around 10 participants and varying levels of exper-
tise [54, 55]. The participants took part in both the 30-minute qual-
ity assessment and 1-hour comparative study of retrieval method
evaluation, allowing for integrated insights into the semantics and
retrieval system. Participants were compensated at a rate equiva-
lent to USD 22 for the 1.5-hour study session. The study received
approval from the Institutional Review Board (IRB).

6.2 Quality Assessment of Extracted Semantics
We conducted a quantitative evaluation with UI designers to assess
the quality and usefulness of the semantics extracted by GPT-4o.
The evaluation aimed to determine the Relevance, Comprehensive-
ness, and Serendipity of the extracted semantics at the app, screen,
composition, and visual design levels. For the quality assessment,
we randomly selected 1,000 screenshots from the Mobbin and
SCapRepo [52] datasets, respectively, and extracted semantics using

Table 5: Human Evaluator Information: Ten participants
were recruited to capture a broad range of perspectives. YOE
denotes years of experience. For students and novice design-
ers, their number of completed UI design projects is noted.

ID Professional Status YOE
/ # projects

Age Gender

E1 Product, UI/UX designer 5 32 M
E2 Product, UI/UX designer 1 / 3 25 F
E3 Product, UI/UX designer 7 29 F
E4 Senior student 3 / 5 26 F
E5 Junior student 1 / 2 26 M
E6 Junior student 2 / 3 23 M
E7 Product, UI/UX designer 12 39 M
E8 Product, UI/UX designer 3 / 6 24 F
E9 Product, UI/UX designer 5 27 F
E10 Product, UI/UX designer 7 28 F

GPT-4o. Participants freely explored the screenshots and associ-
ated semantics, rating at least 15 screenshots per each semantic.
We asked to measure Relevance as how accurately the extracted
information related to the screen, Comprehensiveness as the com-
pleteness of the extracted information without missing key details,
and Serendipity as whether the model uncovered useful information
that designers might not have initially considered. They assessed
the 3 criteria of each of the 14 semantics on a 7-point Likert scale,
where 1 indicated low, and 7 indicated high. After the assessment,
we conducted semi-structured interviews lasting 5-10 minutes to
gather qualitative feedback on the semantics at each level.

6.2.1 Quantitative Assessment of Semantics. The quantitative re-
sults, as shown in Figure 7, demonstrated that the semantics ex-
tracted byGPT-4owere highly relevant, comprehensive, and serendip-
itous across all levels. Examining the relevance scores, we observe
that most semantics (except color palette) achieved mean ratings
above 5 on a 7-point Likert scale, indicating a strong overall rel-
evance of the extracted information. However, there were some
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Figure 7: Quality assessment results of extracted semantics by UI designers. The graph shows the rating distribution on a
7-point Likert scale (1-Low to 7-High) for Relevance, Comprehensiveness, and Serendipity across 14 semantic categories grouped
into Application, Screen, Composition, and Visual Design levels. Each semantic category is represented by a horizontal stacked
bar, with colors ranging from dark red (low ratings) to dark blue (high ratings).

notable variations. The screen role semantic received the high-
est relevance score (6.5±0.7), followed by the target user seman-
tic (6.0±0.94). This suggests that MLLM excels at capturing the
core functionality and intended audience of UI screens. In contrast,
the layout and elements semantics had relatively lower relevance
scores, implying potential room for improvement in extracting
composition-related information.

Shifting our focus to comprehensiveness, we observe a similar
pattern, with most semantics receiving mean scores above 5, except
elements, layout, and action items. The screen role and target user
semantics again stand out with scores of 5.9±0.88 and 5.9±0.74 each,
reinforcing GPT-4o’s effectiveness in capturing comprehensive in-
formation about screen functionality and user characteristics. The
color palette semantic, however, received a lower comprehensive-
ness score, suggesting that the extracted color information might
be less complete compared to other semantic categories.

Notably, the serendipity scores exhibit a different distribution
than relevance and comprehensiveness. Categories like app de-
scription and screen description, which focus on well-established
information, received lower serendipity scores, indicating that GPT-
4o provided highly accurate yet expected results in these areas. In
contrast, semantics related to similar app, target user, and screen
flow (next screen and previous screen), which surface more unique
and less commonly encountered information, scored higher on
serendipity (4.6±1.58, 4.5±1.18, 4.6±2.07, and 4.3±1.89 respectively).
This suggests that MLLM excelled at uncovering unexpected yet
valuable information in cases where designers might not have ini-
tially considered such details, enhancing its potential for inspiring
novel design ideas. On the other hand, the color scheme semantic
received the lowest serendipity score (2.6±1.50), suggesting that
the extracted color schemes align more closely with designers’
expectations and provide fewer unexpected ideas.

Comparing across the different levels, we observed that the app
and screen level semantics generally received higher relevance
and comprehensiveness scores compared to the composition and

visual design levels. This suggests that MLLM is particularly ef-
fective at extracting high-level, functional information about apps
and screens. However, the serendipity scores are more evenly dis-
tributed across levels, with the composition level semantics (e.g.,
action items) showing promise for surfacing novel design ideas.

6.2.2 Qualitative Interview Insights on Extracted Semantics. To gain
a deeper understanding of designers’ perceptions of the extracted
semantics, we conducted semi-structured interviews following the
quantitative evaluation. We asked participants for their impres-
sions of each semantic across levels, probing aspects such as ac-
curacy, usefulness, limitations, and potential improvements. We
analyzed the interview responses using thematic analysis, identi-
fying recurring themes and patterns across participants’ feedback
for each semantic level. The interviews provided rich insights into
each level’s strengths, limitations, and potential use cases of the
extracted semantics.

Application Level Semantics. Participants generally found the
app-level semantics (i.e., app category, description, and target user)
accurate and informative. They appreciated the level of detail pro-
vided in the app descriptions and target user information, which
often went beyond their initial expectations (E1-3, 5, 10). For exam-
ple, E10 highlighted a case where the target user description for a
banking app included specific details about users’ concerns for pri-
vacy and security. However, some participants (E1, 4, 8) mentioned
that similar app suggestions were sometimes repetitive or included
well-known apps, making it difficult to assess their serendipity.
Participants also noted that while the app category and descrip-
tion information was accurate, it might not always be necessary
or useful in their design process (E5, 8). Several participants were
impressed by how the model could extract meaningful application-
level information from latent details in single UI screenshots, such
as background images or small text elements (E2, 7, 10).
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Screen Level Semantics. Most participants perceived the screen-
level semantics, particularly the screen category and role, as highly
accurate and valuable. (E1-4, 6, 7, 10) They found that MLLM was
able to effectively identify the main functionality and purpose of
each screen, even with limited information (E2, 6, 7). However,
opinions were mixed regarding the usefulness of the previous and
next screen predictions. While some participants found them sur-
prisingly accurate (E3, 6, 9), others felt that they were too generic
or lacked the necessary context to be truly helpful in the design
process (E2, 7, 10). Some participants noted that the previous screen
predictions were less accurate compared to the next screen predic-
tions (E1, 2, 6), likely due to the inherent ambiguity in inferring
prior context from a single screen. Participants suggested that pro-
viding more detailed and contextual information about the screen
flow could enhance the value of these semantics.

Composition Level Semantics. Some participants appreciated the
comprehensiveness of the UI element and action item extraction,
noting that MLLM could identify elements they might have over-
looked (E5, 7). However, some other participants also pointed out
instances where the model misclassified or missed certain elements,
such as confusing buttons with other interactive elements or failing
to capture the hierarchy and relationships between elements (E3, 9,
10). The layout semantics were generally perceived as accurate but
somewhat generic, with participants noting that many mobile app
designs follow similar layout patterns (E3, 10). Some participants
suggested that more specific and nuanced descriptions of layout
characteristics could provide additional value.

Visual Design Level Semantics. Participants had mixed opinions
about the usefulness and accuracy of the visual design semantics.
While most found the color palette extraction to be precise (E2-6,
8-10), some participants noticed inconsistencies in identifying pri-
mary and secondary colors (E4, 7, 10). They also mentioned that
the color scheme descriptions were often too broad or generic to
be informative (E7, 8). The mood semantics generated more di-
verse reactions, with some participants finding them accurate and
insightful (E3, 9), while others perceived them as too generic or in-
consistent (E7, 10). Participants suggested incorporating additional
visual elements, such as imagery and typography, could enhance
the richness and specificity of mood descriptions.

Insights across Expertise Levels. The interviews revealed key dif-
ferences between novice and expert designers in their evaluations
of MLLM-extracted UI semantics. Junior designers (under 3 years of
experience; E2, 4-6) expressed satisfaction with app and screen level
semantics, appreciating the accurate descriptions of app categories
and screen flows, which they found valuable for learning UI design
patterns. In contrast, expert designers (E1, 3, 7-10) acknowledged
the accuracy of the semantics but suggested screen flows and mood
descriptions need to be more specified. However, they recognized
potential uses for app level semantics in competitive analysis and
for screen level semantics to enhance communication with devel-
opers and product managers.

Overall, novice designers benefit from detailed insights to learn
UI principles, while experts seek actionable areas for specific tasks.
Participants noted that MLLM’s semantic extraction could improve

Table 6: Flow tasks across different application domains

Domain Flow (Interaction Sequence)

E-commerce Selecting products and checkout
Educational Viewing courses and taking quizzes
Music streaming Exploring playlists and playing music
Travel booking Selecting and booking hotels or flights
Food delivery Choosing restaurants and placing orders

their design processes but suggested more fine-grained refinement
and contextualization.

6.3 Human Evaluation of Retrieval Method
To investigate the advantages and usefulness of our semantic-based
retrieval system in supporting UI design tasks (RQ3), we conducted
a comparative study where designers used both our system and
a baseline system to find inspirational materials for given design
scenarios. The formative study revealed that designers prioritize
functionality in the early stages and aesthetics in the later stages
of the design process. To assess whether our system can effectively
support both aspects, we developed two types of design tasks: (1)
flow tasks for finding inspirational materials related to given user
interaction flows and (2) style tasks for discovering screens that are
related to the desired mood and tone. To ensure our evaluation cov-
ered representative real-world scenarios, we first generated a pool
of 100 UI screen design tasks using an LLM, then converted them
into text embeddings, and employed clustering to identify common
task patterns. Through this process, we identified five prevalent
application domains and their associated interaction sequences, as
shown in Table 6.

For flow tasks, participants were given a specific application do-
main and its interaction sequence, then asked to search for screens
that could inspire their design of that sequence. For style tasks,
participants chose appropriate tone and manner keywords aligned
with their design intentions for each application domain. Then, they
searched for screens conveying these specific tones and stylistic at-
tributes. For each task, participants were provided with a designated
blank Figma frame (or canvas) where they collected and arranged
selected UI screens. For flow tasks, participants organized screens
to illustrate the progression of user interactions, similar to a user
flow diagram. For style tasks, participants curated and arranged
screens to capture their chosen mood and stylistic direction.

To systematically evaluate both systems across different task
types, we employed a Latin square design for task allocation. Each
participant completed four tasks in total: two using S&UI and the
other two using a baseline system. Each participant performed one
flow task and one style task per system. For example, if a participant
used S&UI for a Travel app flow task and a Food delivery app style
task, they would then use the baseline system for an E-commerce
flow task and an Educational app style task. The sequence of system
usage was counterbalanced across participants to minimize learn-
ing effects. The baseline system was a GUIClip [52] model-based
CLIP retrieval [6] interface supporting natural language text search
queries and image search (both based on GUIClip embedding simi-
larity). The order of the systems used was counterbalanced across
participants to minimize potential bias. Each query of both systems
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returned 15 images, with both systems exploring the same database
comprising 10k images from Mobbin. Descriptive figures about
the task allocation (Figure 9) and baseline system (Figure 10) are
illustrated in the Appendix A.

6.3.1 Quantitative Evaluation of Retrieval Method. To quantita-
tively assess the effectiveness of our semantic-based retrieval sys-
tem S&UI compared to the baseline GUIClip system, we measured
five key metrics: Relevance, Diversity, Reliability, Usefulness, and
Serendipity. Relevance measures how closely the retrieved results
align with the given design task and user flow, reflecting the sys-
tem’s ability to understand andmatch user intent.Diversity assesses
the range of different design ideas presented, ensuring that the sys-
tem offers a broad spectrum of examples rather than redundant or
overly similar designs. Usefulness assesses how each system sup-
ports an effective and efficient search experience, focusing on how
well they help designers find relevant and diverse design references
suited to their needs. Reliability evaluates the system’s ability to
maintain consistent and appropriate results when designers use
semantically similar queries (e.g., “minimal", “login screen" vs. “sim-
ple", “sign-in page") to express the same design intent. Participants
were encouraged to make those multiple queries to assess reliability
while searching screens. Finally, Serendipity captures the system’s
ability to surface unexpected yet highly relevant results that can
inspire designers in novel ways, contributing to creative discovery.

Aswith the quality assessment study, participants rated eachmet-
ric using a 7-point Likert scale (1=low, 7=high). Given the within-
subject design and ordinal nature of the ratings, we conducted the
Wilcoxon signed-rank test for statistical analysis of the responses.
Figure 8 illustrates the rating distribution for each metric across
both systems. The results show that our S&UI system consistently
outperformed the baseline GUIClip system across all measured di-
mensions. The most substantial improvements were observed in
relevance, reliability, and usefulness, all of which showed statisti-
cal significance at 𝑝 < 0.01. The enhancements in diversity and
serendipity still reached statistical significance at 𝑝 < 0.05, sug-
gesting that S&UI offers a broader range of inspirational materials
and unexpected discoveries compared to the baseline system. Over-
all, these quantitative results strongly support the effectiveness
of our semantic-based approach in enhancing the UI design inspi-
ration process. The consistent outperformance across all metrics
demonstrates that S&UI provides designers with more relevant, reli-
able, and useful resources while offering diverse and serendipitous
discoveries.

6.3.2 Qualitative Interview Insights on S&UI. After completing the
tasks with both systems, we conducted semi-structured interviews
to gather participants’ experiences with the tools. We asked ques-
tions about the advantages and disadvantages of each system, the
quality of the search results, the effectiveness of the semantic-based
searches, and how our system compares to existing inspiration
platforms. We conducted a thematic analysis, identifying common
themes regarding usability, effectiveness, and potential integra-
tion of our system into other design workflows. The interviews
revealed several key themes that highlight the advantages of our
semantic-based approach.

Pros and Cons of Semantic-based Search. Our evaluation demon-
strated that the semantic-based system delivers significant advan-
tages that enhance the UI design inspiration process through both
its usability and search accuracy. Participants consistently praised
the semantic-based system for its ease of use and ability to find
screens that matched their intended queries about design concepts,
styles, and flow patterns. E9 emphasized this, noting how the sys-
tem consistently delivered exactly what was needed, in contrast to
other tools that provided only loosely related results. They appreci-
ated the wide range of predefined semantic categories and filters,
allowing them to narrow their search efficiently. E5 noted, “The
S&UI was definitely easier to search with, thanks to the detailed
search options." E7 echoed this sentiment: “The number of search
queries and categories available was impressive, making it simple
to find what I needed." This sophisticated semantic understanding
and comprehensive search functionality emerged as a breakthrough
feature that enables designers to conduct nuanced, multi-faceted
searches that were previously impossible with traditional tools.
Several participants (E2, 3, 7-10) highlighted the system’s weight
control feature, emphasizing how it allowed them to refine and
focus their searches. E8 appreciated the weight controls that al-
lowed them to keep their search direction intact while highlighting
specific elements they wanted to emphasize.

While S&UI excels in supporting structured, goal-oriented search
tasks, our evaluation revealed specific considerations for early-stage
ideation scenarios. Some participants noted that structured seman-
tic searches might feel too constrained during initial exploration
phases when design requirements are still fluid. As E10 reflected, “I
think the existing tool is more suitable for browsing and getting
ideas when you don’t have specific requirements in mind", suggest-
ing opportunities to enhance our system to support more open-
ended discovery. Several participants (E1, 4, 7-9) also expressed
interest in adding image similarity features for initial visual inspira-
tion gathering. These insights suggest opportunities to expand the
system’s capabilities to better support undirected and open-ended
phases of design ideation.

Support for Iterative Exploration. Several participants highlighted
the value of the iterative search process enabled by S&UI. They
appreciated how the system allowed them to refine their queries
based on previous result screens and their semantics descriptions,
helping them clarify their search strategies about design intentions
and discover new ideas along the way. E8 described it as “narrowing
down the search step by step," while E3 noted, “The ability to itera-
tively explore and refine my search was really helpful in finding the
right inspiration." This iterative approach was less evident in the
baseline system, which often required users to start new searches
from scratch when refining their queries.

Potential for Integration into Design Workflows. Participants saw
significant potential for integrating the semantic-based system
into their other design workflows than inspirational search. They
identified use cases such as competitive analysis (E3, 10), exploring
alternative design solutions (E2, 6), and communicating design ideas
with developers (E8, 10). The system’s accurate and relevant results
were seen as facilitating better collaboration and alignment within
design and development teams. E2 also highlighted the educational
value of the semantic-based system, noting its potential to help
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Figure 8: Comparison of user ratings between GUIClip and S&UI across fivemetrics: Relevance, Diversity, Reliability, Usefulness,
and Serendipity. Ratings are displayed on a 7-point Likert scale (1-Low to 7-High). The stacked bar chart shows the distribution
of ratings, with darker shades indicating higher ratings. Statistical significance is denoted by * (𝑝 < 0.05) and ** (𝑝 < 0.01).

novice designers improve their search skills and learn about UI
design patterns and best practices.

Search Behaviors Across Expertise. We found interesting patterns
in how designers with varying experience levels utilized S&UI.
Junior designers (3- years of experience) approached the tool to
understand foundational design elements (E2, 5, 6), as E6 noted: “I
search for screens with a similar function because it helps me fig-
ure out the layout and elements I need". Senior designers (5+ years
of experience) leveraged more sophisticated search strategies (E3,
7, 9, 10), with E7 stating: “I combined semantic features together
to find exactly what I needed". This difference in approach was
particularly evident when compared to traditional tools, as high-
lighted by E3, an experienced designer: “Current tools only let you
search with keywords, but they don’t give you the deeper context,
like the app’s audience or the screen’s role". These findings indi-
cate that S&UI supports both learning and professional workflows
through its semantic-based approach. This adaptability suggests
that semantic-based UI search tools can provide meaningful support
while accommodating different needs and expertise.

Comparison to Existing Inspiration Platforms. Participants gen-
erally found our system more effective for task-specific UI design
compared to both art-focused platforms like Pinterest and Behance,
as well as UI curation tools like Mobbin. Art-focused platforms are
considered useful for creative visuals and moodboards, but not as
practical for detailed UI and user flow-specific tasks. E1 noted, “Pin-
terest surfaces beautiful images but doesn’t help much when I’m
looking for a specific flow or user interface element.” While Mobbin
provided curated UI examples, participants felt it was less flexi-
ble in offering deep, customizable search options. In contrast, our
semantic-based system allowed more structured searches through
filters like target user, mood, and user flows, which participants
found valuable for discovering relevant design references. E3 high-
lighted, “I could quickly narrow my search and find exactly the
type of screens I needed for my project.” Overall, while existing

platforms served broader inspiration purposes, our system was
appreciated for its targeted approach, helping users efficiently find
UI designs specific to their design workflows.

To sum up, the interview insights from the comparative evalua-
tion highlight the effectiveness and potential of S&UI in supporting
various UI design stages. Participants consistently preferred the
semantic-based system over the baseline, citing its ease of use, ac-
curacy, relevance of results, and support for iterative exploration.
They also recognized its value in enhancing collaboration, commu-
nication, and learning within design workflows.

7 Discussion and Future Work
Our study leverages MLLM to extract UI semantics from mobile
UI images, enhancing design inspiration search and surpassing
existing methods. This section explores MLLM’s UI semantic under-
standing, how we enhanced the design inspiration search process,
implications for UI design search tools, and the release of the S&UI
dataset, while discussing limitations and future directions.

7.1 UI Semantic Understanding with MLLM
We found that MLLMs can effectively extract meaningful semantics
from UI designs. According to computational evaluation, MLLM
shows strength in multiple UI semantic understandings, such as
app categories and screen roles, significantly outperforming exist-
ing approaches. Likewise, designers appreciated the model’s ability
to extract those semantics accurately. They also appreciated our
unique semantics, which had previously been unavailable, like tar-
get users, similar apps, screen flows, and mood. These semantics
earned relatively higher serendipity ratings. Meanwhile, we ob-
served variations in performance across different semantic levels. In
the human evaluation, app and screen level semantics achieved high
relevance and comprehensiveness ratings from designers, while
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composition and visual design level semantics showed few limi-
tations due to their complexity and subjectivity. The model’s ex-
traction capabilities correlate with the concreteness of semantics.
The MLLM performs best when extracting categorical (e.g., app and
screen categories) and descriptive semantics (e.g., screen role, app
description), but struggles with complex, multiple attributes like
layouts, UI elements, and visual design aspects.

Recent advances in vision-language models suggest promising
approaches to address these aspects. For instance, integrating pre-
trained vision-language model (VLM) with structured UI data ap-
proaches [4, 15, 27] to our pipeline could enhance themodel’s ability
to capture hierarchical relationships of UI elements. Also, incorpo-
rating hybrid approaches using both textual model and VLM [10, 33]
could better handle specific layout and UI element detection. More-
over, leveraging emerging direct vision fine-tuning on MLLM [40],
which has recently become feasible, we could achieve more accurate
semantic understandings by fine-tuning using UI-specific datasets
for specific semantic attributes while maintaining the flexibility
of our approach. Besides, integrating traditional vision models for
color extraction could enhance semantic quality.

These findings indicate that while MLLM can offer significant
advantages for extracting meaningful UI semantics, a more detailed
approach combining multiple techniques may be needed for com-
prehensive semantic extraction. By integrating those approaches
into MLLM, future iterations of our research could better address
the full spectrum of UI semantic understanding needs, from high-
level functional aspects to detailed visual design elements.

7.2 Enhancing the Design Inspiration Process
Effectiveness of Semantic-Based Search. Our user study findings

indicate that semantic-based search significantly enhances design-
ers’ ability to find relevant inspirational screens. Designers reported
that the system’s semantic filters allowed them to perform more
granular searches, focusing on specific screen roles, user flows, or
target audiences. For example, a designer looking for "onboarding
screens for a fitness app targeting beginners" could retrieve highly
relevant examples by searching semantics (screen role: onboard-
ing, app category: health and fitness, target user: fitness beginner),
which would be difficult to find using traditional keyword searches.

Combining multiple semantic criteria enabled designers to tai-
lor their search results closely to their project needs. The weight
control feature also allowed participants to emphasize specific as-
pects of their searches while maintaining consistency in the overall
search direction. This specificity reduced the time spent sifting
through irrelevant designs, streamlining the inspiration phase of
their workflow. Participants noted that the system helped them
discover designs they might not have found otherwise, enhancing
the overall quality of their design exploration.

Explainable UI Search through Semantics. Providing MLLM’s se-
mantic explanations alongside search results increased designers’
trust in the system and made the search process more transparent.
Designers appreciated seeing the extracted semantics for each UI
screen, which allowed them to understand why specific results
were retrieved. This transparency enabled them to decide which
designs to consider further. One participant mentioned, "Seeing the
semantic explanation helps me quickly assess if a design is relevant

to my project. It feels like the system understands what I’m looking
for." This feedback highlights the importance of explainability in
design tools, as it enhances usability and user satisfaction.

7.3 Implications for UI Design Search Tools
Integrating Functionality and Aesthetics in Design Tools. Our find-

ings suggest integrating functional and aesthetic support in design
tools aligns well with designers’ needs. Designers often seek inspi-
ration that fulfills specific functional purposes within an app while
also being visually appealing. By providing semantic filters for both
aspects, the system helps designers find relevant and aesthetic de-
signs. For instance, a designer working on a financial app can search
for "transaction history screens with a minimalist design," ensuring
that the retrieved examples meet both the functional requirements
and the desired aesthetic style. This multi-faceted support facilitates
the design process by consolidating search efforts into a single tool.

Supporting Iterative Exploration and Communication. Providing
semantic analysis results for each screen aids designers in iterative
exploration. Designers can refine their searches based on the ex-
tracted semantics of previously viewed screens, leading to a more
efficient and targeted exploration process. This iterative approach
enables designers to explore broader possibilities while staying
aligned with their project goals. Moreover, the semantic informa-
tion facilitates better communication between design teams and
other stakeholders. By having a set of semantic descriptors, team
members can discuss design elements more effectively. For example,
referring to a "joyful, booking and reserving flow for active people"
provides a clear and shared understanding of the design context,
reducing misunderstandings and improving collaboration.

7.4 Public Release of the S&UI Dataset
As part of our commitment to advancing research in UI design,
we are publicly releasing the S&UI Dataset used in this study’s
experiments on GitHub3. This dataset includes semantic annota-
tions extracted from the UI screenshots used in our evaluations. By
making this dataset available, we aim to provide the research com-
munity with a practical resource that can be used to explore new
approaches to UI semantic analysis. This release of S&UI dataset
represents a significant step towards fostering collaboration and
innovation in UI design, enabling others to build upon our work
and drive new developments in semantic-based UI retrieval, flow
analysis, and design comparison.

7.5 Limitation and Future Directions
While our studies demonstrated promising results, we acknowledge
limitations and areas for future research. First, our current query
design requires manual input of each semantics, which may require
additional thought, especially during the early stages of design
processes where designers often explore broad ideas rather than
specific attributes. Future work should explore allowing designers
to express their needs through free-form queries (e.g., "Show me a
minimalist login screen with dark colors"), automatically mapping
these to each semantic attribute. Second, our retrieval method’s
reliance on weighted embedding similarity becomes less effective

3https://github.com/spark-damian/S-UI
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as query complexity increases. Alternative approaches, such as
semantic combination filtering or category-based matching, could
provide more relevant and diverse results. Also, our current im-
plementation focuses on individual screens, while designers often
need to analyze larger patterns across multiple screens and appli-
cations. Expanding to multi-screen and cross-app analysis could
better support user flow evaluation, including screen transitions,
interaction patterns, and design consistency. Likewise, while our
work focuses on mobile UI design, its approaches and techniques
could extend to web and desktop applications by diversifying the
semantic extraction pipeline to handle more complex layouts and el-
ements. Another exciting direction is exploring how MLLMs could
enable new semantic-aware design synthesis and exploration capa-
bilities in generative design tools. Additionally, a deeper analysis of
how expertise shapes AI-driven design search workflows and use
cases could provide valuable insights. By pursuing these directions,
we can work towards more capable, flexible, and intuitive tools
that support designers’ complex needs and inspire new forms of
semantic-aware design exploration.

8 Conclusion
We present a novel approach that leverages multimodal large lan-
guage models (MLLMs) to extract rich semantics from mobile UI
images and enables semantic-based inspirational search for UI de-
signers. Our formative study with professional designers identified
key semantic elements crucial for the UI design process, guiding
the development of our MLLM-based semantic extraction pipeline
and retrieval system. The evaluation results demonstrate the ef-
fectiveness of our extracted semantics and semantic-based search
system, outperforming existing methods. Our work opens up new
opportunities for more intelligent and UI context-aware design
tools to accelerate the creative process and empower designers to
craft exceptional user experiences. As the field of UI design evolves
and MLLMs advance, we believe our research lays the foundation
for next-generation inspirational search systems that can truly
understand and support designers’ needs and intents.
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A APPENDIX

Travel Booking App

Flow Task

Food Delivery App

Style Task

S&UI

GUIClip

Educational AppE-commerce App

Figure 9: Real examples of results from participant E3 for flow and style tasks for evaluating the S&UI and GUIClip systems.
Flow tasks focused on identifying UI screens to design interaction flows, while style tasks involved discovering UI screens that
aligned with specific stylistic intentions. Participants were assigned specific application domains for each task to guide their
exploration and arrangement of UI screens.
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Figure 10: Baseline System Interface. The GUIClip-based retrieval system supports natural language text search queries and
image search, utilizing embedding similarity fine-tuned on UI datasets for retrieval. Participants can search for UI screens
using descriptive text queries or image queries by uploading or using retrieved result images as new queries.
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