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ABSTRACT 
Charts are commonly used to present data in digital 
documents such as web pages, research papers, or 
presentation slides. When the underlying data is not available, 
it is necessary to extract the data from a chart image to utilize 
the data for further analysis or improve the chart for more 
accurate perception. In this paper, we present ChartSense, an 
interactive chart data extraction system. ChartSense first 
determines the chart type of a given chart image using a deep 
learning based classifier, and then extracts underlying data 
from the chart image using semi-automatic, interactive 
extraction algorithms optimized for each chart type. To 
evaluate chart type classification accuracy, we compared 
ChartSense with ReVision, a system with the state-of-the-art 
chart type classifier. We found that ChartSense was more 
accurate than ReVision. In addition, to evaluate data 
extraction performance, we conducted a user study, 
comparing ChartSense with WebPlotDigitizer, one of the 
most effective chart data extraction tools among publicly 
accessible ones. Our results showed that ChartSense was 
better than WebPlotDigitizer in terms of task completion 
time, error rate, and subjective preference.  
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INTRODUCTION 
Due to their perceptual advantages over textual 
representations, charts are popular and preferable means to 
represent important numerical data in documents [19]. 
People use various types of charts in digital documents, 

many of which can be reused for several purposes such as 
further analyzing the data presented in the chart or improving 
the chart design. However, for most static charts available on 
the Web or in digital documents, people do not have access 
to the underlying data [8].   

An automatic chart data extraction tool like ReVision could 
help people obtain data, but the extraction accuracy might be 
too low for practical use with general chart images because 
text region detection in images is challenging (i.e., often less 
than 80 percent of detection rates) even with the state-of-the-
art algorithms [32]. A tool like WebPlotDigitizer [23] could 
help people obtain more accurate results with additional 
manual extraction capability, but it is tedious and time-
consuming to handle multiple series data. 

In this paper, to suggest a more practical solution to this chart 
data extraction problem, we present ChartSense, a semi-
automatic interactive chart data extraction tool. ChartSense 
integrates algorithms to automatically detect marks (e.g., 
bars in a bar chart) and simple user interactions to support 
more accurate and efficient extraction of the underlying data 
from static chart images. For more effective extraction, 
ChartSense adopts the twofold pipeline proposed by Savva 
et al. [24]: ChartSense first identifies the type of chart by 
exploiting deep learning techniques, and ChartSense then 
applies an interactive data extraction algorithm most 
appropriate for the identified chart type. In addition, 
ChartSense provides a set of simple interactions to fine-tune 
the result, enabling more accurate data extraction. 

We also evaluate the efficacy of ChartSense by comparing 
its classification accuracy with ReVision [24], the state-of-
the-art chart type classification system, and its data 
extraction accuracy and task completion time with 
WebPlotDigitizer [23], the most effective one among the 
publicly available chart data extraction tools. 

This paper makes the following contributions: 

1. A chart type classification method using deep learning 
techniques, which performs better than ReVision [24]. 

2. A mixed-initiative interaction design for fast and 
accurate data extraction for six popular chart types. 

3. The design and development of ChartSense, an 
interactive chart data extraction system equipped with 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than the author(s) must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from Permissions@acm.org. 
CHI 2017, May 06 - 11, 2017, Denver, CO, USA 
Copyright is held by the owner/author(s). Publication rights licensed to 
ACM. 
ACM 978-1-4503-4655-9/17/05…$15.00  
DOI: http://dx.doi.org/10.1145/3025453.3025957 



the mixed-initiative interaction and the chart type 
classification method. 

4. A controlled experiment showing the efficacy of 
ChartSense in comparison to WebPlotDigitizer and for 
three additional chart types. 

RELATED WORK 
Our work is built upon prior work in three related research 
areas; 1) mixed-initiative approaches and systems, 2) chart 
data extraction algorithms and tools, and 3) applications that 
use chart data extraction algorithms.  

Mixed-initiative Approach and System 
Mixed-initiative user interfaces enable people to collaborate 
effectively with intelligent agents [11]. Horvitz presented 
critical factors that should be considered when designing 
mixed-initiative interfaces that integrates automated services 
with direct manipulation interfaces. Many researchers tried 
similar approaches to solve challenging problems in various 
domains. Schwarz et al. [25] presented a framework for 
handling uncertainty in user inputs by providing feedback 
about input uncertainties. The feedback changes dynamically 
through user interactions depending on the probabilistic 
states of corresponding UI elements. Taking a similar 
approach, Gao et al. [7] presented a mixed-initiative system 
to resolve ambiguity in natural language interfaces for data 
visualization. Healey et al. [10] presented a semi-automatic 
visualization assistant system with which people can 
collaborate to improve the results of the system for more 
effective visualization of multi-dimensional datasets. Their 
approach is also based on a mixed-initiative strategy where 
people can integrate their strength with AI-based search 
algorithms. We also adopt a mixed-initiative approach in 
ChartSense to combine advantages from automatic chart 
mark extraction algorithms and people to improve efficiency 
and accuracy of data extraction from chart images. 
Chart Data Extraction  
There are automatic chart data extraction algorithms based 
on image processing and machine learning to extract data 
from chart images [6, 12, 13, 26]. They depend largely on 
edge detection or vectorization algorithms. Therefore, if the 
result of the edge detection or vectorization algorithms is 
noisy for an input chart image, the data extraction accuracy 
could degrade significantly. For example, when we apply the 
Canny edge detection algorithm [3] to line charts in our chart 
image corpus for line detection, we observe that too much 
noise is included in the result to accurately detect the target 
lines. We thus take a mixed initiative approach, i.e., involve 
users in the data extraction algorithms to improve the 
accuracy of the extraction results. 

ReVision [24] is a system that automatically classifies chart 
types and extracts data from a chart image. It classifies a 
chart image as one of the ten chart types and automatically 
extracts data from bar charts and pie charts. Its classification 
accuracy is about 80% on average, and it extracts marks 
successfully from 71% of bar charts and 64% of pie charts. 
We build upon ReVision’s twofold pipeline (type 

classification first and then data extraction) and improve 
accuracy for both the type classification and data extraction. 

WebPlotDigitizer [23] is a web-based tool that extracts data 
from four charts types (bar & line charts and polar & ternary 
diagrams). It has both automatic and manual modes. In the 
manual mode, people have to specify necessary information 
for data extraction. For example, they have to specify y 
positions of all bars’ top for extracting data from a bar chart. 
In the automatic mode, it extracts marks automatically using 
a simple color detection technique. However, due to its low 
accuracy, people usually use the manual mode, which is 
faster and more accurate than the automatic mode. Ycasd [8] 
is a data extraction tool for line charts. It uses a manual 
technique similar to WebPlotDigitizer with which people 
have to specify all the data points in a line chart. 

iVoLVER [21] is also a web-based versatile tool that extracts 
data from an image and reconstructs representations of the 
data. It relies on users’ inputs in both specifying data types 
(e.g., text, colors, shapes, etc.) and sampling data points in 
the image. Thus, it requires a relatively large number of 
interactions to extract data accurately from a chart image. 
ChartSense adopts a mixed-initiative approach for faster and 
more accurate data extraction. 

DataThief [30] is another tool that extracts data from line 
charts. It can extract one line at a time, so people have to run 
it multiple times for a chart with multiple lines. People also 
have to specify six points (origin point, end-points of x-y axis, 
start- and end-point of the target line, and a point on the line). 
DataThief extracts intermediate points between the start- and 
end-points of the line while tracing along the line. However, 
the tracing often fails and halts, so people have to manually 
specify the tracing direction at the halting point. 

Applications using Chart Data Extraction  
Chart data extraction results have been used in a number of 
applications, such as redesigning a chart, generating helpful 
overlay for a chart, mapping a text to a mark based on 
crowdsourcing, and aiding search and retrieval of chart 
images. ReVision [24] provides support for redesigning a 
chart for better perception. It extracts a relational data table 
from an input chart image and presents possible 
visualizations using the extracted data. ReVision allows 
people to select an alternative chart design from a list of 
charts ranked by MacKinley’s effectiveness [20].  

Harper and Agrawala [9] presented another technique for 
redesigning existing charts. Their technique extracts data 
from D3 [1] visualizations by analyzing the structure of 
documents generated by D3.js, and enables non-expert users 
to easily modify visual attributes of the target visualizations. 
Their system includes two tools: (1) deconstructing tool 
extracts marks, underlying data, and mapping between them 
from a visualization and (2) restyling tool helps users change 
the style of the visualization. If underlying data can be 
extracted from bitmap chart images, it becomes possible for 



their restyling tool to convert bitmap chart images to 
interactive D3 charts. 

Graphical overlays [15] are a technique that automatically 
generates helpful overlays from chart images. It is based on 
mark extraction results by ReVision and DataThief. 
Graphical overlays are applicable to bar, pie, and line charts 
because ReVision and DataThief can extract data from those 
chart types. The graphical overlays technique can be used 
with other chart types if combined with mark extraction 
algorithms for more chart types. 

Kong et al. [16] presented a useful application of chart mark 
and data extraction. They presented a crowdsourcing 
pipeline to generate mapping between text phrases in the 
main text and marks in the chart. They used ReVision to 
extract marks and corresponding data values from chart 
images in the pre-processing stage. This application can 
benefit from better chart mark and data extraction. 

Choudhury and Giles [5] presented an architecture for 
extracting information from figures in a PDF file (i.e., 
academic papers). Their architecture consists of underlying 
data extractor, metadata extractor, natural language 
processor (to understand the semantics of figures), and 
search engine for figures and metadata. The architecture is 
like a digital library for figures, where users can search for 
figures of interest. Their data extractor module is limited to 
line charts. More accurate and general chart data extraction 
could make the architecture more widely applicable. Siegel 
et al. [27] parsed result-figures in research papers, and 
facilitated searching and retrieving of the figures. Chen et al. 
[4] proposed a search engine based on diagram component 
extraction, which is capable to search for similar diagrams 
with partially matched components. 
CHARTSENSE SYSTEM 
We designed the ChartSense system using the twofold 
pipeline of chart data extraction suggested in ReVision [24]: 
chart classification and data extraction. We implemented 
ChartSense as a web application: the server is responsible for 
type classification and data extraction while the client 
provides user interfaces for our interactive data extraction.  

Chart Classification 

Chart Image Corpus Construction 
A corpus of chart images with correct tagging of chart types 
plays an important role in accurate chart type classification. 
Before introducing our chart type classification technique, 
we explain how we built our chart image corpus. 

We started with the chart images corpus used in ReVison by 
Savva et al. [24]. To increase the corpus size, we collected 
additional chart images and manually tagged them with their 
chart types. We ran a script to collect chart images using 
Google image search and manually removed incorrect search 
results. To compare the accuracy of our classification with 
that of ReVision, we collected the same ten chart types as 
ReVision (area, bar, line, map, Pareto, pie, radar, scatter plot, 

table, and Venn diagram). We used the chart name as a 
search keyword (e.g., ‘area chart,’ ‘bar chart’) for each chart 
type and collected all images returned by Google image 
search. As a result, we obtained 737 ~ 901 images for each 
chart type (Table 1). Among these, we removed the 
following inappropriate images: 

• False search results (e.g., bar charts or donut charts in 
pie chart image search) 

• Abstract menu icons or symbols 
• Images that include multiple types of charts (e.g., 

images with both bar and pie charts) 
• Handmade sketches 
• Box plots in bar chart image search 
• Photos in map image search 
• Forms in table image search 

Table 1 shows the final number of images, collected and then 
filtered for each chart type. In this way, we constructed two 
image corpora for classifier evaluation: 1) small corpus (n = 
2084): ReVision’s chart images and 2) large corpus (n = 
6997): merged corpus of ReVision’s and newly obtained 
chart images (n = 5659 in Table 1). 

Neural Network Model for Classification 
We built our chart type classification model based on 
convolutional neural network (CNN), a type of feed-forward 
artificial neural network that was proven to show good 
accuracy for image classification among the variations of 
neural networks [17]. CNN consists of three layers: 
convolution layer, pooling layer, and fully connected layer. 
Since implementation details of each layer is not an issue for 
reproducing CNN, we explain each layer in a conceptual 
manner. Convolution layer tangles nearby pixels to abstract 
their meaning. Pooling layer extracts representative 
specimens from the result of the convolution layer to reduce 
computational time. Fully connected layer does conventional 
neural network learning with a back propagation method. 

Among many of CNN variations, we chose GoogLeNet [28], 
an ensemble model based on CNN that showed the best 
performance in the ImageNet Large Scale Visual 

Chart Type Collected Filtered 
Area chart 819 509 
Bar chart 866 557 
Line chart 885 619 
Map 889 567 
Pareto chart 737 391 
Pie chart 874 568 
Radar chart 822 465 
Scatter plot 872 696 
Table 901 594 
Venn diagram 849 693 
Table 1. Number of newly collected and filtered images 



Recognition Competition (ILSVRC) 2014 competition. We 
also evaluated models with relatively shallower networks 
(i.e., LeNet-1 [18] and AlexNet [17]). We used our two 
constructed image corpus for training and validation. 
Training and validation sets were randomly divided into 80% 
and 20%, respectively, from the corpus.  

Throughout the training process, we mainly used a deep 
learning framework Caffe [14]. We first normalized an 
image into a dimension of 256 × 256 × 3 (width × height × # 
of color channels) with a Python image library, and then 
constructed image database with Lightning Memory-
Mapped Database (LMDB) to achieve higher I/O 
performance. We used all three networks described in the 
Caffe format from the Caffe Model Zoo. Among six Caffe 
solvers, we chose stochastic gradient descent (SGD) solver, 
which is widely used due to its simplicity and time efficiency 
[2]. The learning rate policy, which should be specified prior 
to running the solver, was initially set to 0.01 and was 
dropped by a factor of 10 at the 33% (0.001) and 66% 
(0.0001) of the iteration process. Each iteration does forward 
and backward propagations to obtain output and update 
weights. We used one Amazon Web Service g2.2xlarge (26 
ECUs, 8 vCPUs, 2.6 GHz, Intel Xeon E5-2670, 15 GB 
memory) instance with Caffe-installed AMI (Amazon 
Machine Image) to train the models. It took approximately 2 
hours to train GoogLeNet and AlexNet using the large 
corpus, and about 30 minutes for the small corpus. Training 
LeNet-1 took less than a minute for both corpora. 

Chart Type Classification Accuracy 
We first compared the accuracy of the three classification 
models (Table 2). Both AlexNet and GoogLeNet showed 
considerably higher accuracy compared to LeNet-1, yet the 
difference between the two was relatively small. However, 
the number of parameters of GoogLeNet model (approx. 
5.9M) was ten times smaller than that of AlexNet model 
(56.9M). In terms of memory efficiency and its accuracy on 
large corpus, we adopted the model trained with GoogLeNet 
in ChartSense. Then, we compared the accuracy of our chart 
classification model with that of ReVision [24]. We 
calculated the accuracy using five-fold cross validation (five 
repetitions with 80% training and 20% validation sets). We 
trained our model using the two image corpora (i.e., small 
and large corpora).  

Overall, ChartSense shows higher average accuracy than 
ReVision for both datasets. Figure 1 shows the chart 
classification accuracy results per chart type along with the 
overall average accuracy with all chart types combined. For 
individual chart types, ChartSense exhibits higher 
classification accuracy for all chart types than Revision when 
trained with the large corpus, but for six out of 10 types (bar 
chart, line chart, map, pie chart, scatterplot, and table) with 
the small corpus.  

Data Extraction 
In this section, we first summarize three main challenges in 
developing an automatic chart data extraction algorithm that 
has enough accuracy and effectiveness for practical use. We 
then describe a mixed-initiative approach we propose to 
overcome these challenges by utilizing both image 
processing techniques and user interactions. 

Three Challenges in Chart Data Extraction 
First, the diversity in chart style makes it difficult to apply a 
single extraction algorithm to all the charts of the same type: 
although two chart images belong to the same chart type, 
their detailed chart styles can be significantly different. For 
example, some line charts contain no tick marks on the x-axis 
or others may not have horizontal guidelines along the y-axis. 
If a data extraction algorithm works under the assumption 
that the chart image has tick marks on the x-axis or guidelines 

Model 

Classification Accuracy 
(%) number 

of params  Small 
corpus 

Large 
corpus 

LeNet-1 41.8 44.2 0.4M 

AlexNet 77.9 88.8 56.9M 

GoogLeNet 76.7 91.3 6.0M 

Table 2. Classification accuracy and size of models. 

 
Figure 1. Accuracy of chart type classification of ChartSense and ReVision [24] for each chart type. Each classification model 

is trained with the small corpus and the large corpus. 
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along the y-axis, it is not likely to work well for the charts 
that do not meet the assumption. 

Second, Gestalt principles describe how effective we humans 
are in simplifying and deciphering even occluded visual 
components [31]. However, algorithms may have trouble in 
interpreting overlapped visual entities. For example, when 
two lines intersect each other in a line chart, humans can 
correctly perceive both series that intersect on a point. 
However, it could be challenging for line detection 
algorithms, which usually use pixel colors for identifying 
multiple lines, to correctly separate two series.  

Third, to convert extracted marks into data values, it is 
necessary to read labels beside axes. Once a text region 
containing a label is identified, we can extract the label by 
using optical character recognition (OCR). Many OCR 
algorithms show reasonably high accuracy; however, to the 
best of our knowledge, although some previous works tried 
to solve similar problem for graphics or maps [22, 29], there 
has not been yet a text-region-detection algorithm for chart 
images with sufficient accuracy for practical usage (often 
less than 80 percent for detection and less than 60 percent for 
recognition) [32]. For example, chart data extraction tools 
such as ReVision [24] ask people to specify text regions in 
chart images manually.  

Mixed-Initiative Approach 
The main goal of ChartSense interface and interaction design 
was to maximize the accuracy of data extraction results while 
minimizing the burden of manual user interactions. To 
achieve this design goal, we first reviewed available 
techniques for automatic data extraction and identified their 
strengths and weaknesses by trying them with many real 
chart images. Then, we designed basic interactions to 
overcome the weaknesses (1) by asking users to specify 
critical features (e.g., y-values in a line/area chart, base 
colors and center point in a radar chart) with which automatic 
extraction algorithms can generate more accurate results and 
(2) by presenting the automatic extraction results in a way to 
match unique characteristics of each chart type so that users 

can effectively fine-tune the results (e.g., adjusting the center 
point in a pie chart). Thus, reliability of chart type classifier 
was critical in our system and we improved the accuracy by 
utilizing a deep learning-based algorithm.  

To support the fine-tuning of the results from data extraction 
algorithms, we tightly coupled a table view for extracted data 
values and a chart view where the reconstructed chart is 
overlaid on the original chart image; users can interactively 
verify all extracted values because any adjustments in either 
view are coordinated.  

We here detail the data extraction algorithm for each chart 
type after explaining a few assumptions we made. We also 
report the portion of images covered by the assumptions in 
the newly obtained corpus. We denote user interaction and 
ChartSense reaction using ‘[US]’ and ‘[CS],’ respectively. 

Line Chart 
We make the following four assumptions regarding line 
charts: 1) line charts do not have 3D effects; 2) each series 
has a distinct color; 3) intervals are equal in size; and 4) each 
series has horizontal orientation (e.g., time axis for time 
series data is the horizontal axis). 84.17% of the line charts 
in our newly obtained corpus satisfy all the four assumptions. 
The percentages of line chart images that are excluded by not 
fulfilling the four assumptions are 2.26%, 5.33%, 5.65%, and 
3.55%, respectively.    

The data extraction process for line charts is as follows: 

1. [US] Specify a bounding rectangle that encloses all the lines  
2. [US] Specify two y-positions and the corresponding data 

values (Figure 2) 
3. [US] Specify intervals of data points (Figure 2) 
4. [CS] Detect lines in the rectangle specified in step 1 
5. [US] Select correct lines among the detected ones 
6. [CS] Convert the selected lines into values, reconstruct a line 

chart from the values, and overlay the line chart with the 
input image 

7. [US] Adjust incorrectly recognized data points 

Step 1 helps ChartSense crop the input image for more 
efficient processing in the following steps. In step 3, 
ChartSense incorporates user interactions to minimize user 
inputs required to define the interval. Users need to specify 
only three values: the horizontal positions of the leftmost and 
rightmost data points, and the number of horizontal sampling 
positions. ChartSense then calculates all other sampling 
horizontal positions between the two end positions. It shows 
the calculated x-positions with vertical red lines so that users 
can change the three values if necessary. 

To detect lines in step 4, ChartSense starts from detecting the 
dominant colors in the image. Its dominant color detection 
algorithm converts the image into the HSV color space. 
ChartSense uses the H channel to acquire a histogram 
mapped to the number of pixels and then finds evident color 

 

 
Figure 2. Users specify key features: two pairs of y-

position/values (blue lines and texts) and interval of data 
points (red lines). 



ranges as in Figure 3 with a heuristically determined 
frequency threshold (i.e., 1% of total number of pixels). 
When there are more than one local maximum values within 
an evident color range (R3 in Figure 3), ChartSense divides 
the range into several parts using local minimum values as 
boundaries (e.g., R3, R4, and R5 in Figure 3). For each hue 
range, ChartSense can obtain a binary image where the value 
of each pixel that belongs to the hue range is white, and black 
otherwise. ChartSense uses the binary images to detect 
candidates for correct lines.  

ChartSense derives least squared regression lines to enhance 
the accuracy of the originally extracted y-value of sampling 
point. To make a regression, ChartSense additionally 
extracts y-values from four evenly distributed locations 
between each pair of neighboring sampling points. Since 
there are two corresponding regression lines for all sampling 
points except for the two endpoints (i.e., the first and the last 
sampling points), ChartSense determines the final estimation 
of value by taking the average of the two derived y-values 
from the two regression lines. For the first and the last 
sampling points, ChartSense simply uses the estimated value 
from the only regression line. Finally, its algorithm connects 
all derived y-values to make a line. 

Because ChartSense could not always detect lines correctly, 
it asks users to select real (correct) lines among the detected 
ones in step 5. ChartSense shows five detected line colors 
(each determined by taking the average of pixel values in 
each cluster) in a table, and users can check the 
corresponding detected lines one-by-one by hovering the 
mouse cursor over the table cells. After users select correctly 
detected lines, ChartSense extracts data and overlays the 
reconstructed line chart on the input image, and users can 
adjust incorrectly recognized data points by directly 
manipulating them. 

Area Chart 
Data extraction from area charts is almost identical to that of 
line charts. The only difference is that data extraction in line 
charts finds a point for each horizontal sampling position 
with a least square regression line while data extraction in 
area charts simply finds a range of y-values for each color at 
each sampling position.  

Radar Chart 
For radar charts, we make three assumptions: 1) each 
polygon’s color is distinct; 2) all axes share the same scale; 
and 3) all angles between adjacent axes are same. 94.41% of 
radar chart images in our newly obtained corpus satisfies all 
the three assumptions. The percentages of chart images that 
are excluded by the three assumptions is 0.43%, 2.58%, and 
2.58%. Color-filled polygons are particularly challenging to 
extract data from, because blending of overlapping polygons 
could generate a new polygon (see the inset figure). Thus, we 
utilize mixed-initiative approach in handling non-empty 
polygons. 

The data extraction process for radar charts is as follows: 

1. [US] Specify the center point of a radar chart 
2. [US] Specify two consecutive axes end points of the radar 

chart 
3. [US] Specify background color and non-mixed foreground 

colors for polygons 
4. [US] Specify the value for axis end points 
5. [CS] Detect polygons 
6. [CS] Convert the selected polygons into values, create a 

radar chart, and overlay the radar chart on the input 
image 

7. [US] Adjust incorrectly recognized data points 

Radar charts use a similar visual 
encoding with line charts; both 
charts use position as a visual 
variable to encode data. The 
difference is that radar charts 
use a polar coordinate system 
while line charts use the 
Cartesian coordinates system. 
While a polyline in a line chart 
connects data points that are on 
distinct vertical axes, a polygon in a radar chart connects data 
points on distinct radial axes. Therefore, the center point and 
axes angles are necessary in radar charts instead of the 
baseline and data points’ interval in bar charts. Note that the 
center point and axes detections for radar charts are more 
challenging because of the circular arrangement. Thus, 
ChartSense asks users to specify the center point and the end-
points of each axis.  

Regarding color-filled radar charts, ChartSense additionally 
asks users to specify foreground color information (by 
clicking on regions with a non-mixed color. Since 
overlapped regions have blended colors, clustering based on 
hue is not applicable for color-filled cases. Thus, ChartSense 
prepares a list of blended colors from every possible 

 
Figure 3. Detection of dominant colors from an image using a 
histogram built on the HSV color space. Candidate ranges are 

acquired using a heuristic frequency threshold (i.e., 1% of total 
number of pixels), which is denoted by orange line in the 

figure. A range with multiple local maximum values is divided 
again using local minimum values as boundaries. 

R1 R2

R3’

R3 R4 R5 H

Fr
eq

ue
nc

y



combination of the non-mixed foreground colors. It clusters 
pixels by finding the most similar color from the list and 
builds binary images for each cluster. In each binary image, 
ChartSense samples 20 outermost points between each 
neighboring axes pair. Then, it builds lines with all possible 
pair of points. For each line, it compares an area of a triangle 
constructed by the line and two axes and selects the line that 
yields the smallest area and contains all 20 sampled points 
inside the triangle. Since there are two neighboring axes, 
final data points are determined as the average of the two 
estimations. When the algorithm fails to find more than one 
outermost points, it returns a random value on the axis to 
leave opportunity for manual adjustment. 

Bar Chart 
We make two assumptions: 1) bar charts have no 3D effect; 
and 2) bar charts do not include stacked bar charts. Among 
our 557 bar chart images, 68.58% satisfies all the two 
assumptions. The percentages of chart images that are 
excluded by the two assumptions are 9.34%, and 24.24%, 
respectively.  

ChartSense detects bars in a bar chart image as follows. It 
detects a list of color ranges using an H channel histogram as 
it does with line charts. For each color range, it makes a 
binary image by setting white for pixels that have color 
within the range and black for the others. To remove axis or 
assistance grid lines, ChartSense applies an open 
morphological transform (kernel size: 13) to the binary 
image. ChartSense then finds all connected components by 
8-way connectivity, and define a rectangular bounding box 
for each connected component, which becomes a bar in the 
result. The detection algorithm for a single bar is similar to 
prior work [24], but if there are multiple bars in one binary 
images (e.g., grouped bar chart with multiple series), they are 
considered as the bars from the same series. 

Using the bar detection algorithm, ChartSense extracts data 
from bar charts as follows. 

1. [CS] Detects the baseline (x-axis) and overlay the detected 
baseline on the input image 

2. [US] Adjust the baseline if needed 
3. [US] Specify two y-positions and the corresponding data 

values 
4. [CS] Detect bars, convert them into values, create a bar chart 

from the extracted values, and overlay the bar chart on 
the input image 

5. [US] Adjust incorrectly recognized bars if needed 

ChartSense detects bars in the 
input image by the bar 
detection algorithm. Then, it 
infers chart orientation from 
the number of bars that shares 
vertical or horizontal baselines 
(i.e., the orientation is vertical 
when there are more bars with horizontally aligned bottom 

lines, and vice versa). If the extracted bars’ bottom lines are 
aligned on a line, ChartSense regards the line as the baseline 
(left inset figure). Otherwise, ChartSense calculates the 
average of the bottom lines’ y values and regards the 
horizontal line at the average y value as baseline (right inset 
figure). 

Users can fine-tune the baseline position correctly in step 2. 
ChartSense overlays the detected baseline on the input image, 
and users can move the baseline using mouse or keyboard 
until the extracted baseline matches the original baseline. 
After users confirm the baseline, ChartSense crops the image 
above the baseline and uses the cropped image as an input to 
the next bar detection algorithm in step 4. Cropping removes 
unnecessary outer regions for more accurate detection of bars.  

ChartSense assumes that the y-axis scale is linear, and asked 
users to specify any two y-positions along with the 
corresponding data values in step 3. Guidelines and 
associated text values appear as users specify the y-positions 
and data values as blue lines and text.  

After extracting data values, ChartSense reconstructs a bar 
chart from the extracted data and overlays the bar chart with 
the input image. In the new bar chart, ChartSense represents 
bars as transparent rectangles. When users move mouse 
cursor over the rectangles, ChartSense highlights them with 
translucent color. Users can easily identify the disagreement 
between the underlying data and the extracted data by 
comparing the two. The reconstructed bar chart supports 
direct manipulation. Users can adjust bar heights, add 
missing bars, or remove misrecognized bars directly in the 
reconstructed bar chart until the reconstructed bar chart 
matches the input bar chart. After the initial data extraction 
(step 4), the data table shows the extracted data. ChartSense 
updates the table dynamically upon any user modifications 
to the reconstructed bar chart, and users can select and 
highlight a bar by clicking on or hovering mouse cursor over 
the corresponding cell in the table.   

The data extraction process for bar charts shows the general 
flow of data extraction in ChartSense, which applies to other 
chart types in general. Therefore, for the remaining chart 
types, we explain only the unique processes for each chart 
type while skipping the common parts. 

Pie Chart 
We make three assumptions: 1) pie charts have no 3D effect; 
2) each wedge has a distinct color from its adjacent wedges; 
and 3) no wedges protrude over the circle’s border. 53.16% 
of pie charts in our corpus satisfies all the three assumptions. 
The percentages of chart images that are excluded by these 
assumptions are 37.89%, 6.49%, and 8.42%, respectively. 

The data extraction for pie charts consists of only two steps:  

1. [CS] Detect the center point and all borders 
2. [US] Adjust the center point correctly and add, remove, or 

modify incorrectly recognized border points  
 

 

 



We focus on explaining center and border points detection 
algorithm in detail because it is the essential part in the pie 
chart data extraction. First, ChartSense makes a binary image 
from a given input image by the same method used for bar 
charts. Second, it identifies the center and the radius of the 
pie circle by applying Open morphological transform, Canny 
edge detection algorithm [3], and Hough transform in turn. 
After finding the center C and the radius R, ChartSense 
defines border points by sampling the 1,000 pixels uniformly 
along the circle whose center is C and radius is one of 0.5R, 
0.6R, 0.7R, 0.8R, and 0.9R. While traversing the sampling 
points sequentially, ChartSense detects a sudden change of 
pixel values between two consecutive sampling points, and 
regards the center of the transition points as a border point. 
This method can fail when there are letters or symbols in the 
wedges. Therefore, ChartSense runs the border search 
procedure five times with different radii (0.5R, 0.6R, 0.7R, 
0.8R, 0.9R) and use the result that returns the smallest 
number of border points. This approach is similar to prior 
work [24] that uses a circular Hough transformation with 
multiple radii for robustness. After detecting the center and 
border points, ChartSense overlays them on the input chart. 
Users fine-tune the center point and the border points, and 
the data table is updated accordingly (Figure 4). 

EVALUATION: CONTROLLED EXPERIMENT 
We conducted a controlled experiment to evaluate the 
effectiveness of ChartSense for data extraction from chart 
images. The experiment consisted of two parts (Figure 5). In 
Part 1, we compared ChartSense (CS) to WebPlotDigitizer 
(WPD) for bar and line charts. In Part 2, we examined the 
effectiveness of CS only for three additional charts—area, 
pie, and radar charts—because WPD does not support data 
extraction from these charts. 

Participants and Dataset 
We recruited 16 participants (9 males and 7 females) from a 
university campus recruiting website. Average age of the 
participants was 22.6, ranging from 20 to 26. They received 
about $20 for their participation.  

Chart images used for the study were selected from the image 
corpus we built using Google image search for chart type 
classification. To calculate the data extraction accuracy, we 
selected images that had ground truths (i.e., all marks in an 
image have text labels representing the data values of the 
marks). For Part 1, we selected 10 bar chart images and 10 
line chart images. The images were divided into two 
categories: single series (with nine marks) and multiple 
series (two series with nine marks for each). To control the 
number of marks to be consistent, we trimmed some marks 
from the original images when necessary. For Part 2, we 
selected five images per chart type for area, pie, and radar 
charts. The images contained different number of marks (6 
to 16 for area charts, 6 to 13 for pie charts, and 4 to 24 for 
radar charts). We erased the ground truth before the user 
study. 

Study Design, Procedure, and Setup 
We ran the comparison part of the study as a 2 (Interface: CS 
vs. WPD) × 2 (Chart Type: Bar vs. Line) × 2 (Series: single 
vs. multiple) within-subject design (see Part 1 in Figure 5). 
Each participant performed the data extraction tasks from 
both bar and line charts, for both single and multiple series 
charts, using both CS and WPD. To avoid the learning effect, 
we counterbalanced the order of interfaces and chart types. 

Each session began with a brief introduction of the study 
procedure. We then asked the participants to fill out a simple 
pre-study questionnaire to collect their age, gender and major.  

In Part 1, prior to beginning the timed tasks with each block 
(i.e., a combination of Chart Type and Interface), we 
demonstrated participants how to extract data from charts 
using the interfaces for about two minutes. We then asked 
them to practice extracting data from sample charts until they 
could get familiar with the data extraction using the 
interfaces without time constraints. For the timed tasks, 
participants extracted data five times for each number of 
series, and saved the result in a local folder. We asked 
participants to extract data for chart images as accurately and 
quickly as possible. After they completed each of the four 

 

 
Figure 5. The study consists of two parts. In the first part, 
we compared ChartSense to WebPlotDigitizer for bar and 
line charts. In the second part, we evaluated ChartSense 

for area, radar, and pie charts. 

 
Figure 4. Data extraction from pie charts. The blue circle 

represents the detected center point and red points represent 
border points. If users modify the position of the blue circle or 

red points, the data table is updated immediately. 



blocks, we asked participants to fill out a questionnaire. The 
experiment for Part I took about 40 minutes on average. 

Participants went through a similar process in Part 2 but only 
with CS to extract data from area, pie, and radar charts. After 
the tutorial, participants extracted data five times for each 
chart type.  After they completed each of the three chart types, 
we asked participants to fill out a questionnaire. Part 2 took 
about 50 minutes on average. 

Each participant worked on a PC with a client web 
application running on a Google Chrome web browser. All 
results (extracted data values) were saved in the local disk. 
For each condition, we showed the folder that contains five 
chart image files. We asked participants to extract data from 
the image files in the order they appear in the folder. For each 
trial, we timed with a stopwatch, starting when participants 
opened a file and ending when they saved the result.   

Results 
We measured and analyzed two dependent variables from the 
experiment: (1) task completion time and (2) error rate that 
is the ratio of difference between an extracted value and its 
ground truth to the ground truth. We also performed a 
statistical analysis of questionnaire responses. 

Part 1: Task Completion Time 
 We analyzed the task completion time with a 2 (Interface) × 
2 (Chart Type) × 2 (Series) repeated-measures analysis of 
variance (RM-ANOVA). 

We found a significant main effect of Interface (F1,15=70.57, 
p<.001) (Figure 6a). We also found significant main effects 
of Chart Type (F1,15=11.09, p<.001) and Series (F1,15=69.35, 
p<.001) (Figure 6b, 6c). It was expected that line charts take 
more time than bar charts because more interactions are 
required for line charts regardless of interface being used. 
Also, it is not surprising that charts with a larger number of 
series would take more time to complete the task.  

For both chart types, CS helped participants finish tasks 
faster than WPD (Figure 7). We found a significant 
interaction between Interface and Series (F1,15=84.711, 
p<.001). For both “single” and “multiple” series charts, CS 
took less time than WPD. More interestingly, for charts that 
include more marks, the task time of WPD drastically 
increased; however, CS exhibited a relatively moderate 
increase in the task completion time. 

Part 1: Error Rate 
We saved the extracted data and calculated error rate for each 
extracted data value as follow. 

error rate =
|𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑔𝑔𝑔𝑔𝑡𝑡ℎ − 𝑒𝑒𝑒𝑒𝑡𝑡𝑔𝑔𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑔𝑔 𝑣𝑣𝑒𝑒𝑣𝑣𝑔𝑔𝑒𝑒|

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑔𝑔𝑔𝑔𝑡𝑡ℎ
 

For each trial, we took an average of error rates for all 
extracted values (Figure 8). We analyzed the error rate with 
a 2 (Interface) × 2 (Chart Type) × 2 (Series) RM-ANOVA.  

We found a significant main effect of Interface (F1,15=12.785, 
p=.003). We also found a significant main effect of Chart 
Type (F1,15=478.964, p<.001) and Series (F1,15=37.101, 
p<.001). We found a significant interaction between 
Interface and Series (F1,15=11.449, p=.004), and Chart Type 
and Series (F1,15=9.090, p=.009) 

Part 1: Subjective Preference 
We ran Friedman Chi-Square tests for the ratings and found 
a significant difference for all questions (p<.001), indicating 
that participants felt that CS was easier to use than WPD. The 
ratings for CS tended to be higher than WPD for other three 

Question 
Bar Line 

CS WPD CS WPD 
Q1. This interface was 

easy to learn.* 6.4 5.0 6.0 4.8 

Q2. This interface was 
easy to use.* 6.4 4.6 5.9 4.9 

Q3. This interface was 
easy to understand.  5.3 4.0 5.6 4.5 

Q4. This interface was 
accurate.* 6.3 4.7 6.3 4.8 

Q5. I would like to use 
this interface again.* 5.7 4.0 5.8 4.1 

Table 3. Average Likert scale ratings for CS and WPD using the 
scale of 1=Strongly disagree and 7=Strongly agree. The ratings 

of CS were significantly higher than those of WPD for every 
questions except for Q3 with line chart (gray background). 

 
Figure 6. Task completion time (sec) 
by main effects. Main effects were 

significant for all three factors.  

 

Figure 7. Significant interaction effect 
between Interface and Number of series 

on completion time (sec). 

 

Figure 8. Error rate (%) by main 
effects. Main effects were significant 

for all three factors.  

 



questions. The subjective evaluation result is summarized in 
Table 3. 

Part 2: Task Completion Time, Error Rate, and Subjective 
Preference 
The second part of our study only involved CS. The average 
task completion time and error rate are summarized in Table 
4. The subjective evaluation results show that CS interfaces 
for area, pie and radar charts are easy to learn, easy to use, 
and easy to understand (ratings are 6/6.56/5.6 for area, 
5.94/6.38/5.44 for pie, and 5.75/6.06/5.44 for radar charts).  
DISCUSSION AND FUTURE WORK 

Chart Type Classification Accuracy 
Our quantitative comparison on chart type classification 
accuracy of ChartSense and ReVision showed that our 
classification model is more accurate than ReVision’s model. 
When trained with the large image corpus (i.e., union of 
previously used dataset in ReVision and newly collected 
dataset), our classification model showed higher accuracy 
than ReVision for all chart types, but when trained with the 
small image corpus, ReVision’s classification model showed 
higher accuracy in five chart types—area, Pareto, radar, 
scatter plot, and Venn diagram. This can be attributable to 
the fact that the number of images for certain chart types is 
not sufficient to build an effective CNN model, thus shared 
features do not properly represent the chart type throughout 
the convolution layer and pooling layer in the network.  

Mixed-initiative Approach 
Our controlled user study results supported our hypothesis 
that ChartSense outperforms WebPlotDigitizer in terms of 
task completion time, error rate, and subjective satisfaction. 
We attribute this result to our design decision to take a 
mixed-initiative approach that harmoniously integrates the 
state-of-the-art automatic mark extraction techniques with 
simple yet effective user interactions. We believe our 
prototype is designed to take advantages from both automatic 
and manual approaches while mitigating their disadvantages.  

Because we could not find any available tools that can extract 
data from area, pie, and radar charts, we could not conduct a 
comparative study for these chart types. However, given that 
error rates are around 3% (Table 4), we believe ChartSense 
could be practically useful.  

In statistical analysis, we excluded data points from 
repetitive unintentional mistakes with WPD interface and 
outliers identified with interquartile range (i.e., Tukey’s test). 
While using WPD for line chart, some participants clicked 
on the first data points rather than a point on the x-axis, which 
is supposed to be the reference value for data extraction. 
Since it led to huge errors, we excluded such data points 
before applying Tukey’s test.  

It was surprising that line chart data extraction showed 
significantly lower error rate than bar chart data extraction, 
as we expected that it would be easier for participants to fine-
tune bar tops than they fine-tune data points in line charts. It 
might be because of more user interactions in line charts did 

more good (more information) than harm (potential error) in 
our mixed-initiative approach.  

Generalizability 
We made a few assumptions for input chart images that 
ChartSense can handle. Although our data extraction 
algorithms cover a significant number of real-world charts 
even with the assumptions, more work is needed to make our 
approach more generally applicable. It is especially 
important if users are interested in redesigning existing 
charts using perceptually more effective encodings because 
many poorly designed charts are excluded by the 
assumptions. An interesting future research direction would 
be to integrate ChartSense with chart restyling techniques 
proposed by Savva et al. [24] or Harper and Agrawala [9].  

Text-region-finding detection algorithm with high accuracy 
can improve the performance of our interactive data 
extraction algorithm because the performance of OCR is 
significantly affected by text-region-finding results. Text 
labels in charts play an important role in chart data extraction 
algorithms since they serve as reference points to convert 
marks into values. Since there was no practical text-region-
finding algorithms available, users have to manually specify 
y-positions and type in corresponding data values in current 
chart data extraction tools. An actionable future research 
direction would be to developing a text-region-finding 
algorithm for charts. It might be less challenging to detect 
text regions in chart images than in general images because 
the text labels often are located near axes in charts. 

CONCLUSION 
We presented ChartSense: a system that classifies chart type 
and extracts underlying data from chart images by an 
interactive data extraction algorithm. Our quantitative 
evaluation showed that ChartSense achieves higher 
classification accuracy than the previous classification 
system, ReVision. We conducted a controlled experiment to 
investigate whether it could improve users’ performance to 
extract data for two chart types: bar and line charts. We found 
that participants could extract data faster and more accurately 
with ChartSense than WebPlotDigitizer. Furthermore, 
ChartSense is practically useful for three additional chart 
types—area, pie, and radar charts. 
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Chart Type Area Pie Radar 

Time (s) 60.40 32.51 61.63 

Error rate (%) 1.89 2.21 3.19 

Table 4. Average task completion time and error rate for 
area, pie, and radar charts by ChartSense. 
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